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Abstract
Software testing is a key activity to guarantee soft-
ware reliability and maintainability. However, develop-
ers tend to ignore the maintenance of test code when
performing a tradeoff between code quality and release
deadlines. Moreover, the lack of research to quantify
the relationship between test code and production code
quality. As a result, test quality degrades due to the lack
of appropriate refactoring plans. This paper fills the
gap by evaluating to what extent can code quality be
improved by eliminating test smells. First, we detect
the presence of test smells in 119 historical releases of
10 open-source projects. Afterward, we evaluate code
quality in 2 aspects, i.e., defect- and change-proneness.
Finally, we exploit the odds ratio and Mann-Whitney
test to quantify the extent of variation for the code
quality. Results show that the OR values of the test
code and production code are both much greater than
1, which proves that the test smell is indeed a risk fac-
tor to increase the defect-proneness of code. Moreover,
the change-proneness of the test code and associated
production code reduces significantly after their elimi-
nation. Experiment also reveals Assertion Roulette is
the riskiest smell to degrade production code quality.

Keywords: test smell, code refactoring, error-proneness,
change- proneness, empirical software engineering

1 Introduction
Software testing is a key activity to guarantee software
quality by ensuring the robustness of production code
under complex conditions [5, 7]. As a result, software
contains a large number of test code [9], which is costly

to implement and maintain it by hand. Meanwhile, de-
velopers tend to ignore the maintenance of test code
when performing a tradeoff between code quality and
release deadlines, resulting in the lack of appropriate
refactoring plans [2]. Consequently, test code is more
vulnerable to quality issues.
Automated test code is an important part of the soft-

ware system, programming and maintaining have simi-
lar challenges as production code [4]. However, research[2]
has found that developers tend to ignore the importance
of test code. Therefore, the test code lacks a rigorous
refactoring plan, and its quality is generally lower than
the production code [3, 13, 14, 19]. The actual meaning
of improving the quality of test code is mainly based
on subjective experience, and it has not been quanti-
tatively studied and discussed, leading to insufficient
attention to the meaning of software testing. Therefore,
it is imminent to choose a quantifiable perspective to
analyze the significance of improving the quality of the
test code.
Test smell is a derivative of code smells in the con-

text of software testing [2], defined as the sign of poor
design and implementation in software tests, which
is detectable by heuristic and rule-based approaches
[2, 10, 18]. However, the costs and benefits of test smell
refactoring to the improvement of code quality have not
been revealed quantitatively [2, 10], making it difficult
for developers to decide whether they should remove
test smells.
Therefore, with the purpose of understanding the

impact of test smells on code quality from the granular-
ity of class level, we also provide software developers
a reference indicator to measure the cost and benefit
of refactoring test code. In this paper, we tested 119
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historical release versions of 10 open-source projects,
involving 5 test smell types, including Mystery Guest,
Resource Optimism, Eager Test, Assertion Roulette, and
Sensitive Equality. The experimental results show that
eliminating the test smells has a positive effect on code
quality. At the same time, we also find that Assertion
Roulette has the most significant effect on code quality.
The main contributions of this paper are as follows:

• To our knowledge, the first work to explore the
impact of eliminating test smells on the quality
of production code by capturing the existence of
test smells in different versions.

• Our results show that comparingwith the version
without the test smells, the production code’s
defect- and change-proneness in the version with
the test smells are significantly increased.

• We reveal the refactoring of test code is of practi-
cal significance for improving code quality, which
is also a reference point for developers to weigh
the cost and benefit of refactoring test smells.

• We provide an online replication package [12]
for extending and validating our work.

Our paper is organized as follows. Section 2 intro-
duces the background and related work. Section 3 de-
scribes the relevant tools for test smell detection and
the quantitative analysis method of defect-proneness
and change-proneness. In Section 4, we present the ba-
sic process and the result of the experiment. Section 5
illustrates potential threats to effectiveness. Section 6
concludes the paper and proposes future work.

2 Related Work
2.1 Test Smell Definition and Detection
Inspired by the conception of Code Smells, Bavota et
al. [2] defined and proposed 11 test smells and their
refactoring methods. Afterwards, Meszaros et al. [10]
expanded Bavota et al. [2]’s work by involving another
18 test smells to capture actual problems they encoun-
tered during the development process.
Bavota et al. [2] designed an automatic detection

tools for test smells, which is commonly applied in test
smell detection literature. The research indicates that
its accuracy rate can reach 88%, and the recall rate can
reach 100%. However, the tool is not publicly available.
Peruma et al. [15] developed tsDetect as an alternative
to the tool of [2], which is applied in this paper. It can
achieve at least 85% in accuracy and 90% in recall, with
a F-Score of 96.5% [15].

2.2 The Impact of Test Smells
Bavota et al. [2] conducted the first large-scale quan-
tification research of test smells, and they concluded
that test smells harm the comprehensibility and main-
tainability of the test code. The impact of test smells
is together with the size of software, and the intensity
of Sensitive Equality and Mystery Guest is positively
correlated to the life of the software system.
In terms of the impact of test smells on production

code, Spadini et al. [17] found that the test smells will in-
crease the error-proneness of the associated production
code. However, the authors did not assess the influence
of eliminating test smells. Although test smells are indi-
cators of potential software defects, refactoring all test
smells may be costly but ineffective. Due to the lack
of research on the gain of refactoring test smells, it is
difficult for developers to determine whether to refac-
tor the test code. Therefore, we are still ignorant about
the impact of test smells on production code quality in
terms of test code refactoring.

2.3 Definition and Research of
Defect-proneness

Software quality assurance activities (for example, source
code inspection and unit testing) play an important
role in the production of high-quality software. Soft-
ware defects in released products can have costly conse-
quences for the company and affect the company’s rep-
utation. Therefore, predicting and reducing the defect-
proneness of software has important practical signifi-
cance.
Nagappan and Ball [11] use relative code change met-

rics, which measure the number of code changes to
predict the density of defect at the file level.

2.4 Definition and Research of
Change-proneness

Some files of the software are easier to change because
they may contain bugs, poor code structure, or inflexi-
ble design patterns. These files consume more mainte-
nance costs than other files, which are called change-
prone files. If these files are recognized that must be
changed after a long period, then developers must be
familiar with the source code of these files again , which
further increases the cost of maintenance.
Bieman et al. [6] analyzed the impact of using design

patterns on changes in earlier versions of the software.
They regard changed times as a proxy of the change-
proneness. They tested whether class size has an effect
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on change-proneness, and explored the relationship
between design patterns and change-proneness. The
results show that, on the one hand, large classes are
more likely to change in two systems, and on the other
hand, in four of the five systems, pattern classes are
more likely to change.

3 Approach
3.1 Data Preprocessing
Table 1 shows the 5 test smells considered by this paper
derived from [2], including Mystery Guest, Resource
Optimism, Eager Test, Assertion Roulette, and Sensitive
Equality.
We choose these 5 kinds of smells because they are

commonly assessed in related research [17] and open-
source software system (OSS) projects [2]. Moreover,
these test smells have different origins and causes, i.e.,
related to different characteristics of the test code.Mean-
while, they do not co-occur with each other.
The goal of our study is to evaluate to what extent

the elimination of test smells improves the quality of
the test code and its associated production code. With
the purpose of understanding the impact of test smells
on code quality from the granularity of class level, we
also provide software developers a reference indicator
to measure the cost and benefit of refactoring test code.
Figure 1 depicts the process of our experiment, which
will be described in the following paragraphs. Figure 2
shows the pretreatment process.
First, we use the test smell detection tool tsDetect [15]

to obtain the distribution of test smells in 119 historical
releases. The CSV files obtained include the distribution
of 5 test smells, that is, the presence of some smell is
‘TRUE’ or ‘FALSE’ and the detected test classes and their
associated code path. Then, according to the existence
of the test smells in the files, we programmed to capture
the process of removing the test smells.
For different release versions under each project, we

compare the existence of the test smells of each test
class Ci corresponding to each version. If any test smell
always exists before a certain release version reln and
disappears after the release, we record the test class and
the corresponding version number.

3.2 Calculation of defect-proneness
To quantify the defect-proneness, we refer to the SZZ
algorithm proposed by Sliwerski, Zimmermann, and
Zeller [16]. The idea of quantifying the defect-proneness

is to estimate bug- fixing or bug-inducing commits ac-
cording to the version control system’s record of the
class associated with the bug which introduced the
code. In this paper, we define defect- proneness as the
number of bug-introduced commits between the two
versions of the java files where the test class and its
associated production class are located. We determine
whether the submission fixes the defect according to
the method of Fischer et al. [8].
This approach is implemented based on the message

recorded by the version control system when the code
is submitted. If the submission matches an ID in the
issue tracker, or contains keywords such as ‘bug’, ‘fix’,
or ‘defect’, we consider it as a bug fixing activity. The
calculation process of defect-proneness is shown in
Figure 2.
In this experiment, we used RepoDriller [1] to mine

all code submissions to obtain bug-fixing submissions
containing keywords such as ‘bug’, ‘fix’ or ‘defect’ and
the change information, ‘diff’, of the code lines associ-
ated with the bug.
We use Git’s blame feature to track the last time of

the source code line included in the ‘diff’ information
list which is associated with the test class and its related
production class between the two versions correspond-
ing to the elimination of test smells.
According to the idea of the SZZ algorithm, we count

the tracked changes of a certain class’ code lines as the
introduction of defect-proneness. If the introduction is
before the version of the test smells elimination, it will
be counted as the defect-proneness before the removal,
Defect_B. If the introduction is after the version of the
test smells elimination, then it is counted as the defect-
proneness after the removal, Defect_A.
We use the odds ratio to evaluate whether the test

smell is a risk factor that affects the defect-proneness of
the code. The calculation formula is shown in (1). When
the OR value is equal to 1, the test smell does not affect
the defect-proneness of the code. When the OR value is
less than 1, it means that the test smell is a safety factor
that affects the code’s defect- proneness. When the OR
value is greater than 1, it means that the test smell is a
risk factor that affects the defect-proneness of the code.

𝑂𝑅 =
𝑝/(1 − 𝑝)
𝑞/(1 − 𝑞) (1)

In this paper, p represents the odds of being defective
in the classes before the test smells are eliminated and
q represents the odds of being defective in the classes
after the elimination.
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Test Smell Description Influence

Mystery Guest
When a test method uses external
resources,the test is no longer self

contained.

There is not enough information to
understand the tested functionality

and make it hard to use.

Eager Test
Test code that makes optimistic

assumptions about the existence and
state of external resources

It can cause non-deterministic
behavior in test outcomes.

Assertion Roulette A test method checks several
methods of the object to be tested

It makes tests more dependent on
each other and harder to maintain.

Sensitive Equality A test method has many assertions
in a test method that have no explanation.

If one of the assertions fails,
it is not possible know which one it is.

Resource Optimism A test method use
toString in the test method

When the toString method for an
object is changed, tests start failing.

Figure 1. Experimental Steps

Figure 2. The Acquisition Process of Code Defect-proneness

3.3 Calculation of change-pronenes
We define change-proneness as the density of changes
between the two versions of the Java file where the

test classes and their associated production classes are
located. According to the version number obtained, we
have formulated a corresponding time-division interval
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Figure 3. The Acquisition Process of Code Change-
proneness

for each project. The calculation process of change-
proneness is shown in Figure 3.
For the captured test class c𝑖 and its associated pro-

duction class, set the number of modification commits
in the period before the test smells removal is Change_B(c𝑖 ),
and the number of modification commits in the period
after the test smells removal is Change_A(c𝑖 ). Among
all code commits mined by RepoDriller [1], all change
commits include additions, deletions, and modifications.
Considering that the addition and deletion operations
are mainly for the functional level. In this experiment,
we only count the number of modification commits
within the related time range of each class as the change-
proneness. Finally, we use the Mann-Whitney test (with
confidence level 95%) to analyze if there is a significant
difference in the change-proneness of the test code and
the associated production code before and after the
elimination of the smells.

4 Experiment
We select 119 historical releases of 10 open-source soft-
ware systems used in [6] as the dataset because there
are a large number of JUnit test cases in all versions, as
shown in Table 2. In order to explore the extent to how

Table 1. Experimental Dataset

System Versions Classes

Sonarqube 7 2447
Apache Ant 8 282

Apache Cassandra 11 494
Apache Wicket 33 699
ElasticSearch 12 3627

Spring Framework 10 2061
VRaptor4 19 125
Mybatis-3 8 327

Apache Hadoop 5 2717
Hibernate-orm 6 2609

Figure 4. Defect-proneness Comparison Box Plot

the elimination of test smells can affect the quality of
the code, this experiment will answer the following 3
questions:

• RQ1: Before and after the test smells are elimi-
nated, how does the defect-proneness of the test
code and associated production code change?

• RQ2: Does the elimination of test smells affect
the change-proneness of the test code and related
production code?

• RQ3: Is there any difference in the impact of the 5
test smells on the quality of the production code?

4.1 Experimental Analysis
To answer RQ1, we analyze the defect-proneness from
two perspectives, namely: 1) the overall change trend;
2) whether the test smell is a risk factor that affects
the code’s defect-proneness. The results are shown in
Figure 4 and Table 3.
Figure 4 depicts that the number of defect-proneness

contained in the test code and its associated production
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Figure 5. Change-proneness Comparison Box Plot

Table 2. The OR Value of Test Code Group

Test Coed
Defect-

proneness
Probability OR

Has Test Smells Y N
Test Smells
Elimination

Before 336 99 p=0.77 7.11After 141 296 q=0.32

Table 3. The OR Value of Production Code Group

Production
Coed

Defect-
proneness
Probability OR

Has Test Smells Y N
Test Smells
Elimination

Before 336 99 p=0.61 3.17After 141 296 q=0.33

Figure 6.Defect-proneness Histogram of Different Test
Smells

code reduces significantly after the elimination.Table
3 and Table 4 show that the OR value of the test code
group and the associated production code group are

Figure 7. Change-proneness Histogram of Different
Test Smells

Table 4. The Result of MANN -WHITNEY Test

Mann -Whitney U Test of Change-proneness

Table Analyzed Test
Code

Production
Code

P value <0.0001 <0.0001
Exact or approximate

P value? Approximate Approximate

Significantly different
(P<0.05)? Yes Yes

One- or two-tailed
P value? Two-tailed Two-tailed

Mann-Whitney U 36442 31708

greater than 1, which shows that the test smell is a
potential risk factor for the test code and related pro-
duction code.
To answer RQ2, we analyze the change-proneness

from two perspectives, namely: 1) the overall change
trend; 2) whether the change-proneness of the test code
and the associated production code is significantly dif-
ferent before and after the removal of the test smells.The
results are shown in Figure 5 and Table 4.
Figure 5 depicts that the number of change-proneness

in the test code and associated production code after the
removal of the test smells reduces significantly. Table 5
shows the Mann- Whitney rank-sum test results of the
statistical data of code’s change-proneness before and
after the elimination of the smells. There are significant
differences between the two sets of data. To answer RQ3,
we analyze it from two perspectives: 1) The variation
of the production code’s defect-proneness before and
after the removal of the different test smells; 2) The
variation of the production code’s change-proneness
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before and after the removal of the different test smells.
The results are shown in Figure 6 and Figure 7.
Figure 6 and Figure 7 depict that after the removal,

the defect- and change-proneness of the production
code decrease significantly. Among them, Assertion
Roulette has the most significant impact on the defect-
and change-proneness of the production code compared
to the other four test smells.
After performing case studies, we conclude that high

cognitive complexity of understanding the smelly code
may be the cause of such outliers, whichmake the devel-
opers more likely to introduce defects in turn. Similarly,
judging from the OR of the test code and related produc-
tion code being greater than 1, the test smell is indeed
a risk factor that increases the defect-proneness of the
code. Moreover, the OR value of the associated produc-
tion code is 3.17, and the OR value of the test code is
7.11, which is twice the OR value of the production
code. We speculate that the existence of the test smells
greatly increases the possibility of being defective in the
test code and indirectly affects the production code’s
reliability.
For RQ2, according to the result of theMann-Whitney

rank-sum test with confidence level 95% is p<0.0001, it
can be concluded that the elimination of test smells has
a significant impact on the reduction of code’s change-
proneness. As for the outliers in Figure 5, such as, the
test class before the elimination has a maximum of
36 change-proneness, but after the elimination, there
are 41. We speculate that this situation may be due to
the Eager Test needs to call multiple methods of the
production object and involves many files, which leads
to a larger amount of change to eliminate the smell.
For RQ3, the elimination of different types of test

smells all reduce the production code’s defect- and
change-proneness obviously. Among them, the elimi-
nation of Assertion Roulette has the most significant
effect. After it was eliminated, the defect-proneness
of the production code was reduced by 86.1%, and the
change-proneness was reduced by 75.8%.
According to the research of Bavota et al. [2], the

Assertion Roulette appears most frequently in the test
code and because the feature that Assertion Roulette
includes more than one type of assertion to check dif-
ferent behaviors, it is more difficult to be understood
during software testing, which leads developers to in-
troduce more errors and requires more modifications
to eliminate it. Therefore, eliminating this smell is most
useful for reducing code’s defect- and change-proneness.

5 Threats to Validity
A threat to internal validity is that software systems
in different scales, code styles and development habits
of different development teams may cause uneven dis-
tribution of test smells, which affects the experimental
results.
Threats to external validity is the conclusion of this

paper is the reliability of the test smell detection tool.
The quality of the detection tool may affect the validity
of the experiment. However, the reliability of the tool
is validated in [15] based on experimental researches.

6 Summary And Future Work
Measuring the impact of test smells on the code quality
can provide guidance for code refactoring and mainte-
nance. Correct refactoring choices can effectively im-
prove code quality. This paper focuses on 119 historical
releases of 10 open-source systems to quantitatively an-
alyze the changes in the defect- and change-proneness
of the test code and its associated production code be-
fore and after the removal of the test smells. According
to the experimental results, we find that refactoring the
test smells is beneficial to improve the code quality. At
the same time, the refactoring of Assertion Roulette
may be of greater help to the improvement of produc-
tion code quality.
In the future, we can consider open-source projects

based on other programming languages to conduct re-
search, and we can also further refine it to the method
level to explore the situation where developers are cod-
ing.
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