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Abstract—Software defects are faults or bugs within a program
that can lead to incorrect or unexpected outcomes. Efficiently
allocating software quality assurance (SQA) resources to compo-
nents with a higher likelihood of defects, based on software defect
prediction (SDP) models, can save significant effort. While SDP
has been extensively studied in classical software, its applicability
to quantum software remains unexplored. Defect prediction for
quantum software presents unique challenges, including the
susceptibility to quantum-specific defects arising from quantum
coding conventions and the limited size of available datasets. To
address these issues, we propose QDP-FSL, an SDP model using
a pre-trained code model to capture the semantics of quantum
software code, and applying few-shot learning (FSL) to learn
effectively from a small number of defective samples. Results
show that QDP-FSL outperforms baseline methods that rely on
static analysis. This work lays a foundation for future research in
defect prediction for quantum software engineering and outlines
potential directions for further improvement.

Index Terms—quantum software engineering, software defect
prediction, few shot learning, software quality assurance

I. INTRODUCTION

Software defects, defined as faults or bugs within a program,
can result in incorrect or unexpected outcomes in the final
product [1]. Software for quantum computing (i.e., quantum
software) is receiving increasing attention due to its recent
advancements in cryptography, optimization, and artificial
intelligence. As a subset of software, quantum software is not
immune from defects. Due its potential to revolutionize various
domains, reliable software quality assurance (SQA) practices
are essential to identify and resolve these defects.

Software defect prediction (SDP) approaches are utilized to
identify defective code components for more efficient SQA [2].
Without SDP, identifying defects in quantum software can be
expensive, even when automated. For instance, the differential
testing tool QDiff [3] requires running programs in parallel
across various backends. However, some proprietary backends
impose strict limitations and pricing models, and generating
program variants for testing can also be time-consuming. This
process could be more efficient if focused specifically on the
most error-prone components of the code. Meanwhile, SDP
can serve as a valuable guide for code reviews, especially
when resources are limited. In such cases, the most defective
code should be prioritized for reviewing.

However, quantum software defects are different from de-
fects of classifical software. A recent study [4] mentioned
several quantum-specific defects, such as incorrect usage of
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qubits and quantum gates, improper measurement positioning,
and others. Furthermore, an empirical study [5] found that
existing defect prediction practices may not be effective in
domains with unique coding conventions. Therefore, we in-
tend to investigate whether defect prediction approaches are
feasible in predicting quantum software defects.

Achieving effective defect prediction for quantum software
presents several known challenges. The two primary categories
of defect prediction approaches are classical machine learning-
based and deep learning-based methods. Classical machine
learning approaches require feature engineering, with com-
monly used features being generic software product metrics,
such as lines of code and method cohesion [6]. Since quantum
software specific defects are less related to code structure (e.g.,
[4], [7] do not mention defect with such causes), we turn to
deep learning approaches instead. Deep learning methods [8]
automatically capture semantic and structural characteristics
of code by representing them as code embeddings, enabling
automatic feature engineering for defect prediction. However,
many deep learning approaches are data-hungry, making it
difficult for them to learn effectively from small quantum
software defect datasets. To address this issue, we could
either balance the dataset or implement more efficient learning
strategies. We choose not to balance our dataset through data
synthesis or sampling because (1) synthesized data may not
accurately reflect real-world scenarios, potentially introducing
model bias [9], and (2) there is no empirical basis to suggest
that any code component should be balanced with respect to
the others [10]. Therefore, we propose QDP-FSL, an approach
using few-shot learning (FSL) [11] that learns from limited
samples effectively for defect prediction in quantum software.

The main contributions of our paper are as follows:
(1) To the best of our knowledge, this is the first study to

conduct defect prediction for quantum software. Additionally,
it is the first research to apply a pre-trained code model and
FSL to quantum software engineering tasks.

(2) We provide an assessment of QDP-FSL, comparing
its performance against static analysis baselines. QDP-FSL
demonstrates strong performance and outperforms the base-
line. We also analyze the prediction results to identify potential
directions for improvement in future research.

(3) We present a replication package1 that contains the
model construction and prediction process.

1https://github.com/backordinary/QDP-FSL

https://github.com/backordinary/QDP-FSL


II. RELATED WORK

The following sections provide an overview of studies in
SDP, quantum software defect analysis, and FSL for defect
prediction related to the scope of our study.

A. Software Defect Prediction

SDP on classical software rely on machine learning, and
deep learning techniques to predict potential defects. These
models analyze code metrics and historical data to find patterns
linked to defects. Machine learning techniques are conducted
based on product and process features [6] using models such as
Random Forest, Decision Tree, Logistic Regression, and so on.
Deep learning based techniques are emerging since they could
automatically extract features and achieve good performance,
for example, Wang et al. [8] utilized a convolutional neural
network (CNN) with an optimized AST node granularity
for cross-project defect prediction, while Ardimento et al.
[12] employed a deep neural network for just-in-time defect
prediction. Farid et al. [13] combined long short-term memory
networks with CNN in a hybrid model to improve prediction
accuracy, and Wang et al. [14] used a deep belief network to
extract semantic features for defect prediction. Recent study
indicated the unique coding convention of domain specific
software may hinder the feasibility of defect prediction [5].
This leads to our motivation of studying the feasibility of
conducting SDP to quantum software.

B. Few-Shot Learning in Software Defect Prediction

In SDP tasks, the scarcity of defect data presents a major
challenge. Boehm and Basili [15] observed that defect data
distribution follows the Pareto principle, i.e., 20% of modules
often account for 80% of software defects, which means that
defective data is both limited and unevenly distributed. Such
a distribution hinders SDP models from accurate prediction.
FSL could addresses this issue by effectively learning from a
small set of labeled samples, leveraging prior knowledge to
make reliable predictions even with limited data [16]. FSL is
originally introduced by Li et al. [17], which mimics human
learning relying on only a few examples.

In terms of FSL application in defect prediction, Zhao et al.
[18] applied a Siamese parallel fully-connected neural network
(SPFCNN) to tackle the issue of limited defect data in SDP.
This model combines the strengths of Siamese networks and
deep learning, allowing it to better identify defect patterns with
minimal labeled data. SPFCNN is trained using the AdamW
algorithm to optimize weight adjustments, which improves its
prediction accuracy across imbalanced datasets. In another
study, Wang et al. [11] proposed an FSL approach based
on balanced distribution adaptation (FSLBDA). This method
addresses both class imbalance and dataset heterogeneity by
first minimizing the differences in marginal and conditional
distributions between source and target datasets and then adap-
tively assigning weights to these distributions. Through these
techniques, FSLBDA effectively enhances defect prediction
accuracy across various datasets.

C. Quantum Software Defect Analysis

In an empirical study, Zhao et al. [19] found that 28% of
the bug patterns in quantum software are quantum computing
specific, involving issues such as incorrect unitary matrix
implementation in qubit manipulation. Threfore, researchers
developed several specialized tools to localize specific types of
defect in quantum software. QChecker [20] is a static analysis
tool for Qiskit quantum program bug detection which extracts
program information by static analysis of abstract syntax trees
and uses pattern-based detection to find defects caused by
resource allocation errors or incorrect quantum gate usage.
QSmell [21], in contrast, mainly uses dynamic analysis to de-
tect “code smells” in quantum programs, such as long circuits
and redundant quantum gates. Although by definition, code
smells are software maintenance issues that do not necessarily
lead to bugs, QSmell still detects buggy implementation. The
study showed that about 73% of quantum programs contain
one or more code smells, which may lead to performance and
reliability issues. LintQ [22] is a more comprehensive quantum
code analysis tool that captures quantum-specific concepts by
introducing high-level concepts of quantum circuits, gates,
and qubits. Based on these concepts, it detects 10 types
of programming problems, including potential quantum state
errors, redundant measurements, and incorrect subcircuit use.
LintQ achieves 91% precision in a selected subset of problems,
which is superior to traditional defect localization tools.

III. DATASET CONSTRUCTION

The section describes how we construct a dataset containing
defective and clean samples for defect prediction.

A. Collecting Defective Samples

To obtain defective samples, we selected Bugs4Q as the
primary source. Bugs4Q [7] is a defect benchmark specifically
designed for quantum programming, containing 42 manu-
ally validated Qiskit defects from GitHub, StackOverflow,
and Stack Exchange, submitted by Qiskit users, focusing on
quantum-specific defects that from real-world usage scenarios.
Moreover, it also ensures that each defect is reproducible,
even when probabilistic outputs make exact reproducibility
challenging. Moreover, it guarantees isolated fixes, excluding
unrelated refactoring or modifications, and thus preserving
the independency of each defect samples. Lastly, it provides
complete pre- and post-fix code, supporting test case construc-
tion and verification of resolution effectiveness. With these
characteristics, Bugs4Q stands as a high-quality, quantum-
specific, and reproducible dataset.

B. Collecting Non-Defective (Clean) Samples

We select the LintQ dataset [22], the largest available col-
lection of 7,568 real-world Qiskit programs, as a foundational
source for clean samples. According to LintQ’s evaluation,
the original dataset contains some code with implementational
problems. From our understanding, these “problems” are not
identical to bugs, i.e., some problematic code components may
not be buggy. To ensure the cleanness of our dataset, these
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Fig. 1. The process of training and validating QDP-FSL.

samples should be discarded. First, we check LintQ’s detection
report and exclude samples marked with having potential
problems. Second, we review the manual annotation and tool
generated information of all remaining samples to remove any
samples reported problematic, e.g., we exploit CodeQL [23],
LintQ and Qsmell [21] to identify and exclude problematic
samples. Finally, although we do not have enough resource
to manually investigate every code snipet, we still randomly
select 100 programs to verify the effect of this process. The
1st, 2nd, and 5th authors (2 Master’s students and 1 Post-
doc) with quantum software development experience manually
check if they contain any noticeable defects, and we do not
find any defective samples. Indeed, it is still possible that the
dataset contain defective samples, however, this process filters
out suspectable samples by most currently available tools, and
our validation shows it is promising as a clean dataset.

Finally, our dataset contains 6,294 samples, of which 42 are
labeled as defective, while the remainders are labeled as clean.

C. Data Preprocessing

First, we remove blank lines and excessive whitespace in
codes. Then, we use a tokenizer that converts each code sample
into a fixed-length sequence of tokens. Each code snippet is
tokenized and then padded or truncated to be fit into a specified
block size (set to 256 in our implementation). Lastly, we add
special tokens [CLS] and [SEP] at the beginning and the
end of each sequence to mark the start and end positions.

IV. EXPERIMENTAL DESIGN

Fig. 1 shows the process of our experiment. We undergo
data processing and feature extracting procedures to generate
model input, and train QDP-FSL for further validation. This
section describes these processes in detail.

A. Research Questions
The goal of our study is to investigate whether it is feasible

to predict defect for quantum software, with the purpose of
localizing the most error-prone code components to save SQA
efforts. To these ends, we propose the following 3 research
questions, and design the experiment accordingly.

RQ1. How well can QDP-FSL predict defect for quantum
software?

The motivation of this part of study is that since defect
prediction has proven beneficial in classical software engineer-
ing, we intend to verify if quantum software SQA could also
benefit from such methods.

RQ2. Compared with existing approaches, can QDP-FSL
achieve better prediction performance?

In this RQ, we verify whether QDP-FSL is superior to
the available related methods designed for defect localization
based on static program analysis.

RQ3. How can we further improve defect prediction for
quantum software?



We will further conduct case studies and look into the pre-
dictions, which could foster the understanding of QDP-FSL,
and provide empirical insights for future model improvement.

B. Prediction Model Architecture

First, we employ CodeBERT [24] as the pre-trained code
model to extract code representation embeddings and capture
code semantics. CodeBERT, known for its strong generaliz-
ability [25], has been trained on a multi-language dataset from
GitHub, covering major languages used to implement quantum
software such as Python and C#, making it transferrable
across various software engineering tasks. This pretraining
enables CodeBERT to handle a wide range of programming
languages and capture diverse code patterns effectively. Code-
BERT utilizes a bidirectional transformer encoder architecture
to model dependencies and contextual relationships within
code, allowing it to represent variable and function interactions
with high granularity. This comprehensive representation is
particularly advantageous in FSL scenarios, as it provides
informative embeddings that facilitate effective classification
and defect prediction with limited data.

Next, we employ FEAT (Few-Shot Embedding Adaptation
with Transformer) [26] for FSL implementation. FSL models
are trained to use the examples in the support set to predict
the class of a query sample. Thus, an FSL task could be
represented as an N -way, M -shot classification problem [27],
where there are N classes in the support set, and each class
has M labeled examples. We use a fixed N = 2 (which refers
to clean and defective classes), and after tuning, we set M = 7
with a single query sample per task. The introduction of FEAT
is available in the next section.

Finally, to implement the model, we use CodeBERT as the
feature extraction backbone, where its output is a vector with
a dimension equal to 768 (i.e., the hidden size). This vector is
then fed into an 8-head multi-head attention module, producing
a concatenated set of transformed embeddings, which are
subsequently passed into the main FEAT network.

C. Few-Shot Embedding Adaptation with Transformer (FEAT)

Traditional FSL models rely on fixed embedding functions
for generalization, while FEAT adaptively refines class centers
in the support set, making them more representative for
accurate classification of query samples.

We aim to classify samples into either clean class (labeled
0) or defective class (labeled 1). To make the class centers in
the embedding space more distinguishable, FEAT introduces
a set-to-set transformation function T (·), which transforms a
set of original class centers C = (c0, c1) into a set of adapted
class centers C ′ = (c′0, c

′
1), where C ′ = T (C). Transformer

[28] architecture is used for this transformation function [26].
First, we define the transformed query, key, and value

representations. For the original class centers C, we obtain
the transformed query, key, and value as follows:

Q̃ = WQC, K̃ = WKC, Ṽ = WV C, (1)

where WQ, WK , and WV ∈ Rm×hm are learnable linear
transformation matrices, m is the embedding dimension, and
h is the number of attention heads. In the context of defect
prediction, C represents the centers of the clean and defective
classes. These transformation matrices allow the model to
encode the features of the class centers, which are then
processed in the attention mechanism.

Next, multi-head self-attention is used to compute attention
weights and outputs:

V = Ṽ softmax

(
Q̃T K̃√

m

)T

, (2)

This self-attention mechanism captures contextual relation-
ships between class centers without considering their order,
which is particularly suitable for adjusting class prototypes in
FSL tasks. The final adapted class centers are calculated as:

C ′ = LayerNorm(Dropout(WFCV ) + C), (3)

where WFC ∈ Rhm×m is a fully connected, trainable weight
matrix. The combination of LayerNorm and Dropout enhances
the stability and generalizability of the embeddings.

With these adapted class centers C ′, the model can better
distinguish between clean and defective classes in the embed-
ding space. The classification probability for a given sample
is then defined as:

f(x,C ′) = Pr(y = s|x,C ′) =
e−dist(E(x),c′s)∑

c′i∈C′ e−dist(E(x),c′i)
, (4)

where c′s ∈ C ′ represents the adapted center of class s, and
dist(·) is a distance metric measuring the similarity between
the sample and class centers. This formulation ensures that
the query sample aligns with the correct class center in the
support set (either clean or defective).

To maintain intra-class compactness, an embedding adapta-
tion loss is applied to the query set Qseen:

Lquery =
∑

(x,y)∈Qseen

LCE(y, f(x,C
′)), (5)

where LCE denotes the cross-entropy loss, measuring the
discrepancy between predictions and true labels. This loss
encourages query samples to be close to their respective class
centers and distant from other class centers.

To further maintain consistency within each class, FEAT
incorporates a contrastive loss. Both support and query sam-
ples Qseen∪Sseen are passed through the embedding adaptation
module to recalibrate the class centers C. The contrastive loss
is then defined as:

Lcontrastive =
∑

(x,y)∈Qseen∪Sseen

LCE(y, f(x,C)), (6)

where C includes recalibrated class centers based on the
adapted embeddings. This forces the adapted instance embed-
dings to remain close to their own class center and far away
from other centers, enhancing inter-class separation.



The overall embedding adaptation loss in the FEAT model
combines the query loss and the contrastive loss as follows:

LFEAT = Lquery + αLcontrastive, (7)

where α is a hyperparameter that balances the two loss compo-
nents. This structure enables the FEAT model to learn compact
embeddings within each class and well-separated embeddings
between classes, resulting in improved generalization to new
samples in the defect prediction task.

D. Parameter Tuning

We employ grid search to systematically optimize QDP-
FSL’s hyperparameters. This approach allow us to explore
a predefined range of values for each parameter, helping
us identify the optimal configuration for our specific task.
The primary hyperparameters2 and their ranges in this tuning
process are as follows:

(1) Learning Rate is explored within [1× 10−7, 1× 10−1]
to fine-tune the model’s convergence speed and stability.

(2) Weight Decay is tuned across [1× 10−6, 1× 10−2] to
regulate the L2 regularization to prevent overfitting.

(3) Scheduler Gamma is adjusted within [1 × 10−3, 0.9],
controlling learning rate decay and stablizing convergence.

(4) Max Gradient Norm is set between [0.1, 5] to clip
gradients, mitigating gradient explosion and stabilize training.

(5) Number of Tasks per Epoch is tuned from [10, 1000]
to balance between computational efficiency and robustness.

(6) Number of Validation Tasks per Epoch is configured
between 10 and 700 to provide sufficient validation data per
epoch for performance assessment.

E. Model Validation

We conduct 10 rounds of 4-fold cross-validation to max-
imize the use of the dataset and ensure the reliability of
the results, where each round involves a random split into
training and test sets, with the test set always representing
20% of the total data. In each round, we divide the training
set into 4 folds, using 3 for actual training and 1 for validation.
This setup maximizes training data use while allowing us
to monitor model performance on the validation set after
each epoch. At each epoch’s end, we evaluate the model on
the validation set and save the parameters yielding the best
performance based on validation loss or accuracy. Saving the
best model configuration not only helps prevent overfitting but
also ensures that the final model performs consistently across
different validation sets. To clarify, the test set remains unseen
by the model during training, used only for final evaluation.

F. Performance Assessment

We select multiple performance metrics to provide a com-
prehensive evaluation of QDP-FSL’s effectiveness. Consider-
ing the inherent class imbalance in defect prediction datasets,
we specifically emphasize ROC-AUC (Receiver Operating
Characteristic-Area Under Curve) as our primary metric, as

2https://github.com/Sha-Lab/FEAT

it effectively evaluates model performance across varying
classification thresholds and is less influenced by class dis-
tribution disparities, which is recommended by recent defect
prediction study [29]. ROC-AUC assesses the model’s ability
to distinguish between defect and clean samples by calculating
the area under the ROC curve, which plots the true positive
rate against the false positive rate at different thresholds. This
metric is particularly valuable in imbalanced data scenarios,
where metrics such as accuracy or F1 Score may not fully
capture a model’s true discriminative power.

By convention, we also report Accuracy, Precision, Recall,
and F1 Score as supplementary metrics of model performance.
Accuracy provides an initial overview of the model’s overall
correct predictions across all samples. Precision measures the
proportion of true positives among all positive predictions,
helping us understand the model’s tendency to avoid false
positives. Recall, on the other hand, evaluates the model’s
effectiveness in identifying all true positive defect instances.
Finally, F1 Score combines Precision and Recall to provide
a balanced view of the model’s defect prediction capability,
especially in handling class imbalance.

Calculated as the area under the TPR−FPR curve, ROC-
AUC ranges from 0 to 1, where a value of 0.50 indicates a
model’s performance is equivalent to random guessing, and
a value greater than 0.70 indicates good performance [29].
Other metrics range from 0 to 1. The definition of TPR, FPR,
Precision, Recall, Accuracy, and F1 are listed as follows:

TPR =
TP

TP + FN
, (8)

FPR =
TN

FP + TN
, (9)

Precision =
TP

TP + FP
, (10)

Recall =
TP

TP + FN
, (11)

Accuracy =
TP + TN

TP + TN + FP + FN
, (12)

F1 =
2× TP

2× TP + FP + FN
, (13)

where TP is for true positive (positive sample predicted as
positive), FN is for false negative (positive sample falsely
predicted as negative), TN is for true negative, and FP is for
false positive.

V. RESULT AND DISCUSSION

A. RQ1. Model Performance

We evaluate QDP-FSL’s performance using 10 rounds of 4-
fold cross-validation to ensure robustness across different data
splits. Overall, QDP-FSL demonstrates strong performance in
quantum software defect prediction, with ROC-AUC perfor-
mance of 0.798, QDP-FSL significantly outperforms other
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TABLE I
PERFORMANCE OF QDP-FSL AND BASELINE MODELS

Model Accuracy Precision Recall F1 Score ROC-AUC

QDP-FSL 0.855 0.992 0.855 0.916 0.798
QChecker 0.174 0.974 0.174 0.291 0.311
DummyClassifier 0.993 0.000 0.000 0.000 0.500

baselines. The F1 Score of 0.916 further shows QDP-FSL’s
reliability in balancing Precision and Recall.

Finding 1. QDP-FSL achieves good defect prediction per-
formance for quantum software, showing high ROC-AUC
scores, effectively balancing precision and recall.

B. RQ2. Comparing with Baselines

We primarily compare QDP-FSL’s defect prediction per-
formance with the existing quantum defect detection tool,
QChecker [20], and a dummy classification model that make
only predictions of the majority class (the clean prediction).

• QChecker [20] is one of the most adavanced static
analysis tool specifically designed for quantum software defect
localization, focusing on detecting common defects in Qiskit
programs. It addresses not only quantum-specific defects but
also a broader range of defect types, and it relies on rules that
capture predefined quantum-specific patterns. Since no SDP
approach presently exists for quantum defect prediction, we
select QChecker as a baseline to assess QDP-FSL’s effective-
ness compared with currently available solution. To clarify, all
code components detected as buggy, regardless of their bug
type, are marked as defective.

• DummyClassifier is involved to simulate the models
that are not able to deal with extremely imbalanced dataset.
For example, our early implementation based on a example
classifier3 of the CodeBERT repository has similar behavior
as the DummyClassifier since it outputs the clean prediction
for almost every instance.

3https://github.com/microsoft/CodeBERT/tree/master/CodeBERT/codesearch

Table 1 lists the mean performance of the baselines and
QDP-FSL, and better performance is bolded. Fig. 2 demon-
strates the model performance boxplots of QDP-FSL and
QChecker. The DummyClassifier is not included in the figure
because its performance is consistent in each fold. In terms of
the comparison with QChecker, although QChecker performs
well in Precision, it shows limited coverage in identifying
defect samples, with low Recall and F1. Meanwhile, the
prediction of the DummyClassifier outputs a high Accuracy
of 0.993, but its Precision, Recall, and F1 Score values are
0, and the ROC-AUC performance is no better than random
guessing. These results indicate that the approaches that cannot
deal with extremely imbalanced dataset will be ineffective.

Finding 2. In defect prediction, QDP-FSL achieves better
performance than the static analysis baseline.

C. RQ3. Discussion

Although our quantum software defect prediction model
demonstrate good performance, it outputs erroneous results
in some cases. This section discusses these cases and propose
potential improvement directions.

1 from qiskit.circuit import Parameter
2 from qiskit.circuit.library import

RealAmplitudes
3 from qiskit.opflow import CircuitStateFn
4 from qiskit.opflow.gradients import Gradient
5

6 # The correction is: ansatz = RealAmplitudes(
num_qubits=1, reps=1).decompose()

7

8 ansatz = RealAmplitudes(num_qubits=1, reps=1)
9

10 for method in [’param_shift’, ’fin_diff’, ’
lin_comb’]:

11 grad = Gradient(method).convert(
CircuitStateFn(ansatz))

12 print(f"{method} is ok")

Listing 1. An example of wrong API usage.

Involving Knowledge of Quantum Software API Usage.
Some bugs can only be detected by executing the program,
as they may result in exceptions or incorrect outputs (e.g., as
discussed in [7]). These bugs are typically harder to predict



because they often do not involve obvious logical errors
or are caused by simple misuse of APIs, and fixing them
generally requires only minor adjustments. Defect predictors
often classify such issues as clean samples. For example,
the buggy statement RealAmplitudes(num_qubits=1,
reps=1) should be appended with a decompose() method
call (see Listing 1) to prevent an exception from being raised.
This example highlights the challenge of using a general
pre-trained model without domain-specific adaptation. We
believe that incorporating more quantum programs and their
documentations about API usages into the fine-tuning process
for these pre-trained models will help them better capture the
correct usage patterns of common and critical APIs.

1 import os
2 from kaleidoscope.errors import

KaleidoscopeError
3 try:
4 from .version import version as

__version__
5 except ImportError:
6 __version__ = ’0.0.0’
7 from kaleidoscope.interactive import *
8 try:
9 from qiskit import QuantumCircuit

10 from qiskit.providers.aer import Aer
11 from qiskit.providers.ibmq import IBMQ
12 except ImportError:
13 HAS_QISKIT = False
14 else:
15 HAS_QISKIT = True

Listing 2. An example containing error-related keywords.

1 import os
2 from kaleidoscope.errors import

KaleidoscopeError
3 from .version import version as __version__
4 from kaleidoscope.interactive import *
5 from qiskit import QuantumCircuit
6 from qiskit.providers.aer import Aer
7 from qiskit.providers.ibmq import IBMQ
8 HAS_QISKIT = True

Listing 3. Modified code of Listing 2 that lead to a clean prediction.

Enhancing Model Robustness for Specific Semantics.
In contrast, certain code components that are clearly correct
are consistently classified as defective. We discovered that
the model is highly sensitive to specific tokens, particularly
keywords related to errors and bugs. For instance, consider
the code snippet in Listing 2, which imports quantum software
dependencies and is obviously clean. However, after removing
the try-catch clauses in the same code (see Listing 3), the
model classifies it as clean. This result is misleading, as Listing
3 is actually more erroneous than Listing 2 because it fails to
verify the existence of the required dependencies. This ob-
servation suggests that the model’s sensitivity to error-related
keywords may contribute to misclassification, highlighting an
area for further improvement in model robustness.

Mitigating Bias in the Dataset. We also observe that
code components involving index operations and method calls
with integer values are more frequently classified as defective
(e.g., Listing 4 is misclassified as defective). We attribute this
to dataset bias, since the defective samples in our dataset

primarily focus on qubit-related issues, and many of these
defective instances involve such operations, which likely con-
tributes to the model’s biased predictions. To address this issue,
we propose incorporating a broader range of defect types and
more diverse normal defect samples across various quantum
bug categories, which could enhance the model’s ability to
generalize and reduce bias.

1 from qiskit import QuantumRegister,
ClassicalRegister, QuantumCircuit

2 qrx = QuantumRegister(3, ’x’)
3 qry = QuantumRegister(2, ’y’)
4 qrz = QuantumRegister(1, ’z’)
5 cr = ClassicalRegister(4, ’c’)
6 qc = QuantumCircuit(qrx,qry,qrz,cr)
7 qc.measure([qrx[1], qrx[2]], [cr[0], cr[1]])
8 qc.measure([4, 5], [2, 3])
9 qc.draw()

Listing 4. Code containing index and method call operations with integers.

Finding 3. We infer that involving more quantum software
API knowledge, improving model robustness and mitigating
bias dataset are potential directions to improve QDP-FSL.

VI. THREATS TO VALIDITY

In this section we present the threats to validity. Construct
validity refers to the relationship between theory and observa-
tion. Conclusion validity is related to treatment and outcome.
External validity is about the generalizability of the results.

A. Construct Validity

The most significant construct validity is that whether
our dataset and method could capture real defect and their
characteristics in quantum software. In terms of the dataset, the
positive samples are derived from Bugs4Q, which includes 42
reproducible buggy program, and thus these samples are reli-
able. The negative samples may contain threats to validity, they
come from the LintQ dataset, which utilizes the GitHub search
API to identify code with Qiskit imports. We discard the code
components marked as clean but affected by potential factors
that may lead to bugs in the dataset. To minimize the threat,
we perform a sampled analysis on a set of results and find
no bugs in the clean dataset. In terms of QDP-FSL, although
the applied model is significantly different from static analysis
based approach that use heuristic- and rule-based approaches
that locate precisely the defects, our embeddings extracted
from CodeBERT also represent semantics of quantum software
code components, which is proved effective in SDP [25].

B. Conclusion Validity

The major conclusion validity of our study is the small
size of our dataset, particularly the few defective samples.
However, these samples come from manual annotation based
on a large scale dataset, and their corrections are also included.
To our knowledge, there are few existing datasets of good
quality. For example, the LintQ paper [22] detects “problems”
in code, but they do not confirm whether they are actual bugs.
Since software for quantum computing is still emerging, we
expect more data to become available in the future, e.g., the



Quantum HumanEval dataset to be released by IBM [30],
which will help us better evaluate QDP-FSL.

C. External Validity

Our dataset only includes Qiskit programs. Qiskit is one
of the leading frameworks for creating quantum software.
However, we cannot guarantee that our method will work
well in other contexts, such as predicting defects in Q# code.
However, since the pre-trained model we use to generate code
embedding is generalizable and performs well in C# and Java
downstream tasks such as code translation [31], we believe
that QDP-FSL is transferrable to Q# defect prediction.

VII. CONCLUSION AND FUTURE WORK

We proposed QDP-FSL to investigat the feasibility of pre-
dicting defects for Qiskit-based quantum software. CodeBERT
is used as the pre-trained code model to represent code
components, and an FSL approach called FEAT is used to
address the issues brought by the imbalanced dataset. Result
showed QDP-FSL outperforms static analysis approach.

In the future, QDP-FSL may be further improved and
assessed by shifting more focus to quantum software specific
implementations, improving model robustness and explainabil-
ity, and testing QDP-FSL in quantum software implemented
in other frameworks and programming languages.
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