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Abstract—Dormant open-source software (OSS) dependencies
are no longer maintained or actively developed, their related code
components are more vulnerable and error-prone since they can
hardly keep up with evolving software dependents. Presently,
their migration remains costly and challenging for practitioners.
To tackle such a challenge, we intend to characterize, predict,
and automatically migrate high-risk dormant OSS dependencies.
Our pilot study of 4,945 Maven dependencies reveals over half
of them are dormant, and 12.15% pose a high security risk.
These high-risk dependencies can be predicted early based on
their version release and usage characteristics. They are rarely
migrated by developers, and simple one-to-one API migrations
can be achieved with little context using Large Language Models
(LLMs). Future research will be conducted on a more complete
dataset, incorporate socio-technical features for improved high-
risk prediction, and fine-tune a migration code generator.

Index Terms—dependency migration, open source sustainabil-
ity, supply chain security, empirical software engineering

I. INTRODUCTION

OSS dependencies facing sustainability issues may become
dormant, i.e., no longer maintained or actively developed.
Without updates, these dependencies become increasingly
vulnerable, leading to maintenance and security challenges.
Consequently, they are considered weak links [1] in the OSS
supply chain and should be prioritized for migration.

However, migrating dormant dependencies involves several
steps, each of which can be costly [2]. Developers must (1)
identify the most critical and vulnerable dormant dependen-
cies, (2) find suitable replacements, and (3) migrate every
usage of the old library to the new one. As a result, this
migration process can take years [3].

Recent research has explored the usage of dormant depen-
dencies within the PyPI [4] and npm [3] ecosystems. Mean-
while, OSS dependency recommendation for migration [5], [6]
is also an area of active study. However, to our knowledge,
these studies do not adequately address the challenges posed
by dormant OSS dependencies, as they offer only empirical
insights or partial solutions for migration. Therefore, we aim to
tackle this issue by predicting potential high-risk dormant OSS
dependencies in advance, recommending suitable replacement
dependencies, and automatically generating migration code.

The main contribution of this paper includes:
(1) We find that high-risk dormant OSS dependencies in

Maven constitute 12.15% of all dependencies. These de-
pendencies exhibit distinct characteristics regarding release

intervals and usage patterns, and they are rarely migrated,
regardless of the activity status of the associated projects.

(2) We present a preliminary prediction model for high-risk
dormant OSS dependencies, alongside a case study demon-
strating their migration using LLMs, showing the feasibility
and challenges of building automated early warning and mi-
gration processes. The replication package is available in [7].

(3) We outline the future plans to improve the warning
model and build a migration code generation model.

II. PILOT STUDY

In our pilot study, we aim to explore the necessity and
feasibility of warning developers about potential high-risk
dormant dependencies and facilitating their migration. We
analyze the characteristics of high-risk dormant OSS depen-
dencies, and investigate whether and how they are migrated. To
ensure feasibility, we conduct preliminary predictions of such
dependencies and perform a case study on their migration.

A. Characteristics of Vulnerable Dormant Dependencies

Data collection is conducted within the Maven ecosystem,
as it has not been addressed in recent studies [3], [4], and
it features widely utilized dependencies. We crawled the
dependencies from category pages and the “popular” page
between August 13 and 15, 2024. The collected information
includes dependencies, vulnerabilities in the latest release, re-
lease timestamps for all versions, and usage categories for both
the dependencies and their dependents. Dependencies without
releases since January 1, 2022 are classified as dormant [8].
We excluded 0 usage dependencies, and we identified 2,637
dormant OSS dependencies out of a total of 4,945.
• RQ1. Are dormant dependencies vulnerable?

We collect data on the number and severity of CVEs (Com-
mon Vulnerabilities and Exposures) for dormant dependencies
and their dependencies from mvnrepository [9] and the NVD
API with Common Vulnerability Scoring System (CVSS) [10].

Finding 1. About half of the dormant dependencies are
vulnerable, with a mean CVE count of 3.80, and an outlier
CVE count threshold (Q3 + 1.5IQR [11]) of 5.

• RQ2. Why are dormant dependencies vulnerable?



Only 1.09% of the 1,280 vulnerable dormant OSS depen-
dencies are affected by direct CVEs, the majority are impacted
by their dependencies, i.e., indicating transitive vulnerabilities.

Finding 2. Lacking maintenance of dependencies is the
main reason that makes dormant dependencies vulnerable.

• RQ3. Which dormant dependencies are riskier?
We define a dormant dependency as high-risk if (1) it is

affected by any CVE having critical or high CVSS severity,
or (2) it has more than 5 CVEs, categorizing it as an outlier of
CVE count based on Finding 1. Among the 1,280 vulnerable
dormant dependencies, 46.95% are at high risk.

Since most vulnerabilities in dormant dependencies are
introduced by their dependencies, we analyze their usage
categories and scopes. The top 5 categories are presented in
inset (a) of Fig. 1, while the distribution of the dependency
scopes is shown in inset (b) of Fig. 1. In inset (c) of Fig. 1 we
display the 10 most frequent vulnerable dependencies, labeled
as {scope}//{category}//{name}.

Finding 3. Dependencies using utility, JSON, and I/O
processing dependencies in the compilation scope are riskier.
Test dependencies are also major sources of CVEs.

B. Migration Practice of High-Risk Dormant Dependencies

In this section, we outline the challenges posed by high-risk
dormant dependencies and the urgency to tackle them.
• RQ4. Are high-risk dormant dependencies migrated?

To examine the presence of high-risk dormant dependencies
and their impact on software projects, we collect projects
affected by these dependencies. We identify their usage in
pom.xml files using GitHub search and gather project in-
formation. We opt for GitHub search over its API due to
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Fig. 1: Statistics of vulnerable dependencies of high-risk
dormant dependencies.

the significantly lower number of results returned by API
calls. Ultimately, we retrieved 7,997 affected projects. To our
astonishment, none of them migrate dormant dependencies.

Finding 4. Preliminary studies indicate that dormant depen-
dencies in the Maven ecosystem are rarely migrated.

• RQ5. Do high-risk dormant dependencies affect active
projects?

To avoid drawing biased conclusions due to the lack of
maintenance in the retrieved projects, we assess their develop-
ment status and popularity. Among the 7,997 affected projects,
1,717 have more than 5 stars, and 37.68% of these 1,717
projects are active, i.e., have development activity since 2022.

Finding 5. More than one-third of the projects with high-
risk dormant dependencies are actively maintained.

C. Feasibility Studies for Addressing Dormant Dependencies

In this section, we examine the feasibility of warning de-
velopers about high-risk dormant dependencies and resolving
existing dormant dependencies by generating migration code
under the condition that little migration presently occurs.
• RQ6. Can dormancy and high-risk be warned early?

1) Dormancy Prediction: We predict the dormancy
of a dependency based on the timing of its latest
release. To this end, we develop six predictive features:
days_since_prev_release,avg_days_release,
days_since_first_release,num_releases_all_
times, num_releases_last_year, and num_usage.
The first 5 features are calculated based solely on the day
intervals between adjacent release dates, with intervals
of less than one day being ignored. If a dependency has
only 1 release, the first 5 features are set to 0. We use
Random Forest as a classifier and employ shuffled stratified
10-fold cross-validation to evaluate its AUC, MCC, and
F1 performance [12]. We achieve an ideal [13] mean AUC
of 0.93, MCC of 0.72, and F1 score of 0.87. The boxplot
summarizing the performance of each fold is presented in
inset (a) of Fig. 2. The feature importance in Shapley values
[14] indicate that days_since_first_release and
num_releases_all_times are the most significant
features that contribute to the model, with higher values
correlating to a lower likelihood of dormancy. Conversely,
a higher days_since_prev_release increases the
prediction of dormancy. The feature importance figures and
feature descriptions are available in the online appendix [7].

2) High-Risk Prediction: Using the previous dataset
and similar experimental settings, we further predict high-
risk dependencies among dormant dependencies. Given
that transitive dependencies are a primary source of
vulnerabilities, we develop 8 additional dependency features
accordingly. These features are designed to (1) count the
usage of dependencies in significant scopes, specifically
num_{compile,test}_scope_dependencies, (2)
count the usage of dependencies in important categories,
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Fig. 2: 10-fold cross-validation model performance boxplots.

namely num_{testing,logging,core_utils,json_
lib,io}_cat_dependencies, and (3) count the number
of all dependencies with num_dependencies. We achieve
a mean AUC of 0.87, F1 score of 0.60, and MCC of 0.51,
with the performance boxplot shown in inset (b) of Fig. 2.
While there is room for improvement, especially for F1 score,
we conclude that these features are valuable predictors.

Finding 6. Based on limited features of time intervals, usage
categories, and scopes, dormancy can be well predicted, and
the high-risk prediction model needs further improvement.

• RQ7. Can dormant dependencies be migrated with
minimal historical context provided?

Recent studies consider library migration as a task that iden-
tifies equivalent API mappings between 2 libraries based on
migration histories [5], [15]. However, the findings from RQ6
indicate that historical migration may not exist. Therefore,
we investigate whether LLMs such as CodeLlama-70b and
GPT-4o-mini can facilitate such migrations, since LLMs per-
form well in tasks requiring understanding API relations and
generating unseen code, e.g., code translation [16]. The input
prompt is: “This class uses the vulnerable {target library} as a
dependency, migrate the {target library} usages to {destination
library} to {purpose}, the code is as follows: {code}.”

First, we use net.sourceforge.jexcelapi:jxl’s
usage [17] as an example, its purpose is processing
Excel files. The jxl library became dormant in 2011
and is categorized as an “Excel Library.” Apache POI is the
most popular active Excel library, so we migrate jxl to POI.
Both libraries have one-to-one API mappings. GPT-4o-mini
produces correct output that preserves the original behavior,
while CodeLlama-70b generates API calls in the wrong pack-
age, requiring slight modifications for compatibility.

Next, we generate migrations from com.github.pmeri
enne:trident-ml to WEKA [18]. The trident-ml de-
pendency is a machine learning library that became dor-
mant in 2015, while WEKA is a well-known active alternative.
This migration has more complex one-to-many API mappings
in TF-IDF calculation for a cosine similarity evaluation script
[19], and the LLMs fail to produce executable results.

In conclusion, the primary failure reasons are (1) complex
one-to-many API mappings, (2) hallucinations causing the

generation of inexistent API calls (inlining with [20], [21]),
and (3) producing empty functions requiring implementation.
The results can be found in the online appendix [7].

Finding 7. In our case study, LLMs could migrate depen-
dencies having one-to-one API mappings with minimal con-
text, but failed in more complex one-to-many API mappings.

III. FUTURE PLANS

Fig. 3 provides an overview of our future plans. Building on
the findings from our pilot study, we aim to address RQ1-7 in
a more rigorous and comprehensive manner by conducting an
in-depth characterization of high-risk OSS dormant dependen-
cies, issuing warnings about potential high-risk dependencies,
and migrating them using context-enhanced LLMs. These
proposed approaches will be applied and tested on industrial
Java web-apps in government and fin-tech sectors.

A. Socio-Technical Characterization of High-Risk OSS Dor-
mant Dependencies

1) Motivation: Our goal is to answer RQ1-5 more effec-
tively by understanding the socio-technical characteristics of
widely used, highly vulnerable, and difficult-to-migrate high-
risk dormant dependencies. While our pilot studies in RQ1-
3 focus on the surface characteristics of dormant dependen-
cies, not all of these dependencies are high-risk; some may
have transitioned to dormancy after achieving their primary
development goals. To enhance prediction accuracy, we aim
to incorporate more socio-technical features [22] that capture
the health and functionality of dependencies. Pilot studies in
RQ4-5 examine the impact of dormant dependencies within a
limited set of projects, and we plan to expand this scope to
validate our findings across a broader range.

2) Approach: First, we identify high-usage dependencies
and the affected repositories from World of Code (WoC)
[23], a software supply chain analysis infrastructure containing
complete mirrors of open source software repositories such as
GitHub. We extract both technical and socio-technical features
from the affected repositories to characterize high-risk dor-
mant dependencies. The technical information mainly includes
details related to dependencies and their applications, such
as API usage, code semantics, and code quality. In contrast,
the socio-technical information considers factors related to
the updates and maintenance of dependencies, including code
turnover rates, developer retention rates, the number of pull
requests and code reviews, commit intervals, the duration of
development, and the network density, distance, and accessibil-
ity features of the development community. These factors can
significantly influence the maintenance status of dependencies.

Next, we aim to establish improved rules for identifying
high-risk dormant dependencies. The identification criteria
may include significant slowdowns in updates, cessation of
maintenance, marking as archived, and the latest version
being labeled as outdated. High-risk identification rules might
involve the presence of severe CVEs in the latest version, the
number of CVEs exceeding a specific threshold, and the count
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Fig. 3: An overview of future plans.

of unresolved or unassigned defect reports. We will invite
professional developers to validate these rules and the findings.

B. Better Warning of High-Risk OSS Dormant Dependencies

1) Motivation: Our goal is to address RQ6 by warning
developers about unhealthy dependencies early, i.e., knowing
what and when to migrate. Our pilot study in RQ6 indicates
that warnings can be issued at the time of the last release. We
aim to enhance this preliminary model by incorporating the
socio-technical features developed in the previous subsection.

2) Approach: First, we extract usage features and socio-
technical characteristics as independent variables for predic-
tion. As dependent variables, we use high-risk, dormancy,
and the number of severe defects [24] and CVEs as targets,
incorporating both security and quality aspects.

Second, we approach the prediction of dormancy and high
risk as a classification problem, while treating the prediction of
severe defects and vulnerability counts as either a regression or
time series forecasting problem. The models will be validated
using time-wise [25] approaches and will produce predicted
probabilities for dormancy and high risk, along with estimates
for the number of defects and vulnerabilities. Additionally,
SHAP [14] will be utilized to calculate feature importance
based on model predictions and to explain model behavior.

C. Evaluating and Enhancing LLMs for OSS Dormant De-
pendency Migration Code Generation

1) Motivation: Our goal is to address RQ7 by generating
code for migration, i.e., knowing migrate to which library
and how to achieve it. Based on Finding 7, this section
primarily focuses on developing a state-of-the-art approach
for one-to-one API migrations, tackling challenges such as
hallucinations and responsiveness issues by retrieval augmen-
tations and fine-tuning [21]. With a more robust model, we
will explore solutions for more complex API mappings.

2) Approach: First, we recommend an alternative depen-
dency. We plan to build a migration dataset using WoC. Then,
all available migration targets will undergo filtering based
on multiple constraints, including maintenance quality [26],
centrality in the dependency network [27], licenses [28], and

dormancy tendencies. Maintenance quality considers factors
such as whether the library implements security measures
recommended by OpenSSF [29] or GitHub, as well as the
speed of vulnerability resolution. Network centrality constraint
filters out less popular dependencies in the OSS ecosystem
by measuring their usage. The license compliance constraint
ensures the recommended open-source dependencies do not
conflict with the target project’s license. The dormancy ten-
dency constraint exploits the prediction methods from the
previous section to avoid recommending poorly maintained
dependencies. Then, the remaining most frequently migrated
libraries will be treated as candidates; if no migration history
is available, we will select the most popular library that meets
the constraints as an alternative.

Second, we train and fine-tune the retrieval and the code
generation model. The migration code will be treated as a
patch for the original code, using both the code to be migrated
and the migration code as context for enhanced retrieval
context. We will train a retriever and fine-tune an open-source
pre-trained code model (e.g., CodeT5 [30]) as the migration
code generator. Both dense and sparse retrieval algorithms
will be employed to construct the retriever, with the training
process primarily focusing on the dense retriever. The output
from the retriever will be used to fine-tune the pre-trained
model, enhancing its understanding of code migration tasks.

Third, we evaluate our model alongside existing alternatives.
We use prompts that outline the migration’s needs while
incorporating available knowledge from documentation and
comments to enhance the context, and select the most relevant
result through beam search. We will create multiple datasets
of varying difficulty [31], e.g., simple datasets for one-to-one
mappings with more context and challenging datasets for one-
to-many or many-to-one mappings, and progressively enhance
performance on the more difficult tasks. The outcomes will be
validated by both developer feedback and quantitative metrics.

IV. CONCLUSION

We conducted a pilot study to predict high-risk dormant
OSS dependencies based on their usage characteristics and
release intervals, while also assessing their migration status



and feasibility. Results indicate developers seldom migrate
them, our prediction model demonstrates ideal performance,
and the potential of LLMs for migration is also highlighted.

Based on these observations, we proposed future plans
including an in-depth socio-technical analysis of high-risk
dormant OSS dependencies, the development of a prediction
model that incorporates additional quality and security aspects,
and a context-augmented migration code generation model.
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