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Abstract

In software development, developers create bug reports within an Issue
Tracking System (ITS) to describe the cause, symptoms, severity, and other
technical details of bugs. The ITS includes reports of both intrinsic bugs
(i.e., those originating within the software itself) and extrinsic bugs (i.e.,
those arising from third-party dependencies). Although extrinsic bugs are
not recorded in the Version Control System (VCS), they can still affect Just-
In-Time (JIT) bug prediction models that rely on VCS-derived information.

Previous research has shown that excluding extrinsic bugs can signifi-
cantly improve JIT bug prediction model’s performance. However, manually
classifying intrinsic and extrinsic bugs is time-consuming and prone to er-
rors. To address this issue, we propose a CAN model that integrates the
local feature extraction capability of TextCNN with the nonlinear approxi-
mation advantage of the Kolmogorov-Arnold Network (KAN). Experiments
on 1,880 labeled data samples from the OpenStack project demonstrate that
the CAN model outperforms benchmark models such as BERT and Code-
BERT, achieving an accuracy of 0.7492 and an F1-score of 0.8072. By com-
paring datasets with and without source code, we find that incorporating
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source code information enhances model performance. Finally, using the
Local Interpretable Model-agnostic Explanations (LIME), an explainable ar-
tificial intelligence technique, we identify that keywords such as “test” and
“api” in bug reports significantly contribute to the prediction of extrinsic
bugs.

Keywords:
Bug report, Extrinsic bugs, Just-In-Time bug prediction, Explainable
artificial intelligence

1. Introduction

Bug reports are a central artifact in software maintenance, providing cru-
cial information for understanding, localizing, and resolving bugs. Analyzing
bug reports is an important and long-standing topic in software engineering
research. While traditional bug prediction research often assumes that ev-
ery reported bug is linked to a corresponding bug-introducing change (BIC)
in the Version Control System (VCS), recent empirical studies have revealed
that this assumption does not always hold [1, 2, 3]. In particular, prior works
[1, 2] point out that some failures are not directly caused by changes visible
in VCS, but rather by modifications in the context or environment, such as
dependency upgrades, that occur outside of the recorded code history. More
explicitly, [3] distinguishes between intrinsic bugs, whose bug-introducing
changes can be identified in VCS, and extrinsic bugs, which are caused by
external changes (e.g., errors in external APIs, compatibility issues, or evolv-
ing specifications) and therefore lack an explicit bug-introducing change in
VCS.

This distinction between intrinsic and extrinsic bugs is not merely aca-
demic. In Just-In-Time (JIT) bug prediction, a technique that predicts
whether a change under review will introduce a bug before it is commit-
ted, training datasets are constructed by linking bug-fixing changes (BFCs)
to their corresponding BICs. However, when extrinsic bugs are mislabeled as
intrinsic, these datasets become contaminated with noisy or incorrect BICs.
Such contamination has been shown to significantly degrade model perfor-
mance [3], potentially leading to false alarms or missed bug-prone changes in
practice. Given the increasing reliance on automated JIT bug prediction in
large-scale software projects, ensuring the quality of these datasets is critical.

A straightforward solution is to manually inspect and label bug reports
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to distinguish between intrinsic and extrinsic bugs, as done in [3]. How-
ever, this approach is prohibitively time-consuming, error-prone, and does
not scale to the volume of bug reports generated in modern projects. Further-
more, the growing complexity of software ecosystems, characterized by rapid
dependency evolution, continuous integration pipelines, and heterogeneous
runtime environments, makes such manual filtering increasingly impractical.
This creates an urgent need for automated methods to identify extrinsic bugs
directly from bug report contents.

Despite the recognized impact of extrinsic bugs on predictive modeling, no
prior work has systematically explored the use of modern text classification
techniques for their automatic identification. This gap is particularly notable
given the rapid progress in deep learning for software engineering, where pre-
trained models of code [4, 5, 6] and natural language [7] have achieved state-
of-the-art results in tasks such as bug/defect prediction [8], clone detection
[9] and code summarization [10]. Additionally, prior studies on bug report
quality [11, 12, 13] have shown that code snippets, stack traces, and other
structured elements in bug reports can serve as strong contextual signals
for understanding bugs. However, their potential in distinguishing extrinsic
from intrinsic bugs remains unexplored.

To address these challenges, we propose a novel text classification ap-
proach, CAN, which integrates TextCNN [14] and KAN [15], to automatically
identify extrinsic bugs from bug reports. Using datasets from the OpenStack
project, we evaluate multiple representative models on both code-containing
and code-absent datasets of bug reports, and employ LIME (Local Inter-
pretable Model-agnostic Explanations) [16] to explain the predictions of the
best-performing model. The contributions of this paper are summarized as
follows:

• We extract bug reports from the OpenStack project and apply various
text classification techniques to evaluate the effectiveness of identifying
extrinsic bugs. Experimental results indicate that text classification
techniques can effectively identify extrinsic bugs by analyzing bug re-
ports. Our proposed CAN model demonstrates the best performance
in terms of F1 score.

• We examine the role of source code in identifying extrinsic bugs. We
hypothesize that valuable information can be extracted from the source
code present in bug reports and conduct experiments to compare the
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classification performance of datasets incorporating and excluding code.
The experimental results indicate that datasets incorporating source
code as text enhance the models’ ability to identify extrinsic bugs,
while excluding source code generally degrades models’ performance.

• We employ LIME to analyze feature importance in the CAN model’s
correct predictions. Experimental results show that words such as
“line” and “py” play a significant role in classifying intrinsic bugs,
while terms like “test” and “api” strongly influence the classification
of extrinsic bugs.

By automating the identification of extrinsic bugs, our work addresses a
critical bottleneck in preparing high-quality datasets for JIT bug prediction,
thereby contributing both to the theoretical understanding of bug origin
classification and to the practical improvement of predictive maintenance
tools.

To support reproducibility and facilitate future research, we release a
replication package that includes the labeled dataset, preprocessing scripts,
training and evaluation code of the CAN model. The resources are pub-
licly available1, allowing researchers to replicate our experiments and further
explore extrinsic bug classification in different settings.

The rest of this paper is organized as follows. Section 2 presents the re-
search questions and introduces experimental settings. Experimental results
and analysis, as well as discussion and implications, are described in Section
3 and Section 4, respectively. Section 5 describes the threats to validity. Sec-
tion 6 introduces related work. The conclusion and future work are presented
in section 7.

2. Experimental Setup

In this section, we firstly present research questions and correspond-
ing motivations, and then introduce the processes of data extraction, pre-
processing, model construction, and performance evaluation. The overall
framework of our experiment is depicted in Figure 1.

1https://github.com/Hugo-Liang/CAN
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Figure 1: The Overall Framework of Our Experiments

First, we extract bug reports from the VCS based on their identifiers and
pre-process data to construct the training dataset. The resulting dataset is
then divided into two categories: “code-containing” (for bug reports includ-
ing code snippets) and “code-absent” (for bug reports without code snippets).
Both categories are used in our experiments as follows: For RQ1, we evaluate
models using the complete dataset that includes both “code-containing” and
“code-absent” bug reports. For RQ2, we specifically use the “code-absent”
dataset to train and evaluate models and compare their performance against
models trained and evaluated on the complete dataset.

These datasets, along with a mapping dictionary that aligns reports with
their respective labels, are used to train the classification models. Finally,
the trained models are evaluated on the test set, and we analyze the results.
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2.1. Research Questions

Our study aims to explore the effectiveness of using representative deep
learning-based methods to predict extrinsic bugs through bug reports. To
achieve this, we propose the following research questions:

• RQ1: How effective are text classification models in identifying extrin-
sic bugs through bug reports?
Motivation: For JIT bug prediction scenarios, misidentifying BICs in
extrinsic bugs degrades the quality of training datasets, which in turn
affects the performance of JIT models. To ensure high-quality datasets,
it is crucial to identify and remove extrinsic bugs. However, manually
classifying bug reports is a labor-intensive task. Therefore, we investi-
gate whether text classification methods can be used to automate the
identification of extrinsic bugs.

RQ2: Can datasets that include code as text improve the performance
of models in identifying extrinsic bugs?
Motivation: Prior studies [11, 12, 13] have consistently shown that
code snippets and other code-related elements in bug reports, such
as stack traces, file/class names, and code examples, provide strong
contextual cues for understanding and localizing bugs. Despite this ev-
idence in bug localization research, the role of such code-related textual
elements in extrinsic bug identification remains unexplored. In prac-
tice, many real-world bug reports consist primarily of code snippets and
output logs, which may encode critical signals for distinguishing extrin-
sic bugs from intrinsic ones. Motivated by these findings, we investigate
whether code-containing bug reports can enhance model performance
in identifying extrinsic bugs compared to the code-absent dataset.

• RQ3: How can the predictions of the proposed CAN model for identi-
fying extrinsic bugs from bug reports be explained?
Motivation: In RQ1 and RQ2, we evaluated the effectiveness of sev-
eral models under different scenarios in identifying extrinsic bugs and
found that our proposed CAN model achieves competitive performance.
However, high predictive accuracy alone is not sufficient for practical
adoption, especially in software maintenance scenarios, where develop-
ers need to understand why a model makes certain predictions before
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trusting and acting on them. Therefore, we focus on the interpretabil-
ity of the CAN model by employing LIME to analyze which textual
features in bug reports contribute most to correct predictions.

2.2. Data Extraction

In the ITS, issue reports can encompass various types, such as bug reports,
improvement suggestions, new feature proposals, and other records related to
software development. Consistent with existing literature, this study focuses
solely on bug reports.

For dataset selection, this study chooses the open-source project Open-
Stack as the research dataset. This choice is primarily based on previous
research findings, particularly the work of Rodŕıguez-Pérez et al. [3]. They
extracted 1,880 bug records from the OpenStack project and invited two
reviewers with at least a master’s degree in computer science to manually
classify these bugs into intrinsic and extrinsic bugs, with the corresponding
quantities shown in Table 1. To enhance the consistency and reliability of
the classification results, the Krippendorff’s Alpha [17] method was employed
for reliability assessment during the study, as reported in the original dataset
construction work [3].

Component Total Intrinsic bug Extrinsic bug

Swift 31 19 12
Nova 748 490 258

Neutron 648 359 289
Glance 104 43 61
Cinder 349 209 140

Table 1: The Information of Datasets. Source: [3]

With the information of the 1,880 issues in the ITS and the VCS, we can
extract their bug reports for obtaining useful text features. Figure 2(a) illus-
trates an example of a bug report without code in the OpenStack project,
while Figure 2(b) presents an example of a bug report with code in the
OpenStack project. In bug reports, the “summary” and “description” fields
contain most of the useful information for software analysis. Given the preva-
lence of bug reports containing code in real-world scenarios, we posit that
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such reports can play a crucial role in identifying extrinsic bugs. Accord-
ingly, we extract the textual descriptions from all bug reports to capture rel-
evant features. Subsequently, we construct code-containing and code-absent
datasets of bug reports. These datasets will be utilized for further analysis
and model training in subsequent phases of our research.

(a) An Example of a Bug Report Without Code in the OpenStack Project. Source: https://bugs.

launchpad.net/nova/+bug/1243037

Springer Nature 2021 LATEX template

8 Automatic Identification of Extrinsic Bug Reports for Just-In-Time Bug Prediction

Fig. 3 An example of a bug report with code in OpenStack project

With the information of the 1,880 issues in the ITS and the VCS, we
can extract their bug reports for obtaining useful text features. Fig.2 shows a
example of bug report in OpenStack project and Fig.3 shows a example of bug
report with code in OpenStack project. In a bug report, the fields of summary
and description contain most of the useful information for software analysis.
Since bug reports with code often appear in real scenarios, we think they can
help identify extrinsic bugs and extract all bug descriptions to obtain textual
features. Then, we transform the collected bug reports into a complete datasets
and a datasets without code, which is as shown in Table 1.

4.2 Data Processing

Since textual information is a combination of string tokens, we cannot directly
use it as an input to models or classifiers. To solve this problem, we need to
build a mapping dictionary between tokens and integers. Assuming that the
number of tokens is m and each token is associated with a unique integer
where the mapping integers range from 1 to m. Also, deep learning models
are requested that input vectors need to be the same length. Firstly, we count
the frequency of each token and then sort them based on the token frequency.
Then, we build an index dictionary of the ordered tokens, in which tokens with
higher frequency are in front. In order to avoid sparse vectors, the appropriate
vector length should be selected. For a vector whose length is less than the
specified length, it is filled with 0 which is meaningless as an input to the
model. For a vector whose length is longer than the specified length, tokens of
extra length will be deleted. Since the token with higher frequency is mapped
into smaller integer, the token with the lowest frequency is mapped into the
maximum integer. Hence, we locate the index of the maximum integer in the

(b) An Example of a Bug Report With Code in the OpenStack Project. Source: https://bugs.launchpad.
net/neutron/+bug/1242662

Figure 2: Examples of Bug Reports in the OpenStack Project
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Before training the model, we first performed a statistical analysis of
the word count distribution in the bug reports (see Figure 3) to provide
a basis for setting the padding length. The results show that most bug
reports contain fewer than 150 words, with the highest proportion falling
within the 1–49 word range. The shortest report contains 2 words, while the
longest contains 1,582 words. The median length is 60 words, and the average
length is 107.8 words. Based on this distribution, we selected appropriate
padding lengths for subsequent experiments to balance information retention
and computational efficiency.
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Figure 3: Distribution of Bug Report Lengths (in Words)

To systematically investigate the impact of hyperparameters on model
performance, different combinations of batch size and pad size were tested.
Specifically, batch size was set to 16 and 32 to compare the effects of small
and medium batch sizes on parameter update frequency, memory usage, and
gradient estimation stability. At the same time, pad size was set to 64, 128,
256, and 512 based on the bug report length distribution (see Table 2) to
evaluate the effect of sequence truncation and padding on model performance.

2.3. Data Pre-processing

This study uses BERT [7], CodeBERT [4], PLBART [5], and CodeT5 [6]
as the baseline models. These models, trained on large-scale corpora, ex-
hibit strong language comprehension and are effective at capturing semantic
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Max # of Words Number of Bug Reports Percentage (%)

64 979 52.07
128 1422 75.64
256 1688 89.78
512 1842 97.98

Table 2: Distribution of Bug Reports by Maximum Number of Words

features and contextual information. As data processing procedures for pre-
trained models are generally standardized, this section focuses on the data
processing workflow for TextCNN, highlighting its specific application in the
text classification task.

In each experiment, the dataset is randomly divided into a training set
(60%), a validation set (20%), and a test set (20%). The text data is then
standardized and cleaned by removing special characters, punctuation marks,
and converting all text to lowercase. Following this preprocessing, words
are extracted using spaces as delimiters and sorted by their frequency of
occurrence. The 7,000 most frequent words are retained to construct the
vocabulary, while low-frequency words are discarded. To evaluate the quality
of the constructed vocabulary, pre-trained word embeddings (GloVe) are used
for coverage analysis, achieving a coverage rate of 94.36%, thus providing a
reliable foundation for subsequent text classification tasks.

During vocabulary extraction and word embedding retrieval, the text is
mapped into a machine-readable format using the constructed vocabulary.
Words not included in the vocabulary are replaced with special placehold-
ers such as “<pad>” (used for padding) and “<unk>” (indicating unknown
words). Pre-trained word embeddings are then used to generate correspond-
ing vectors for the words in the vocabulary, forming the word embedding
matrix. For words that are not present in the pre-trained embeddings, zero
vectors or randomly initialized vectors are typically used. To balance perfor-
mance and storage efficiency, only words in the vocabulary that match pre-
trained embeddings are retained, and the processed embeddings are saved
as a compact .npz file for efficient use in subsequent model training and
evaluation.
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2.4. Model Construction

This study compares the performance of the traditional deep learning
model TextCNN with several classic pre-trained models (such as BERT,
CodeBERT, PLBART, and CodeT5) on the text classification task. Ad-
ditionally, it draws inspiration from the KAN architecture proposed by Liu
et al. [15], which is based on the Kolmogorov-Arnold representation theorem.
This theorem states that any multivariate continuous function can be repre-
sented as a finite composition of univariate continuous functions, providing
a theoretical foundation for constructing neural network architectures with
greater interpretability and strong approximation capabilities.

On this basis, we propose a novel model architecture called CAN, which
organically integrates TextCNN with KANLinear. The goal is to enhance
classification performance and model interpretability in the task of identify-
ing extrinsic bugs. The following sections introduce the basic principles of
TextCNN and KANLinear, with a particular focus on the design of the CAN
model.

(1) TextCNN
TextCNN [14] is a classical convolutional neural network model for text

classification. Its core idea is to use multiple convolution kernels of different
sizes to extract features from text and capture local semantic information at
various scales. The model first transforms the input text into a word em-
bedding matrix, then applies 2D convolution operations, followed by global
max pooling to extract the most salient local features. Finally, these features
are passed through a fully connected layer to output the classification result.
The model has a simple structure and is computationally efficient, capable
of automatically learning key information from text. It is especially suitable
for short-text classification tasks and has demonstrated strong performance
across various natural language processing scenarios.
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(2) KANLinear
The KANLinear model is constructed based on the Kolmogorov-Arnold

representation theorem [15]. Its core idea is to transform complex multivari-
ate continuous functions into compositions of multiple univariate continuous
functions. The typical structure of the model consists of three stages:

• Decomposition Stage: The input multivariate function is first de-
composed into several univariate functions. This step leverages the
Kolmogorov-Arnold representation theorem.

• Univariate Function Processing: Each decomposed univariate func-
tion is processed individually. This part can adopt traditional neural
network architectures, such as fully connected layers, convolutional lay-
ers, etc.

• Combination Stage: The processed univariate functions are recom-
bined to produce the final output.

Specifically, for any continuous function f(x1, x2, ..., xn) defined on a
closed interval, it can be expressed as a finite combination of univariate
continuous additive functions, as shown in Equation 1:

f(x1, x2, ..., xn) =
2n+1∑
q=1

Φq

(
n∑

p=1

ψp,q(xp)

)
(1)

where Φq and ψp,q are continuous univariate functions, and xi are the
input variables.

(3) CAN (Fusion of TextCNN and KANLinear)
To integrate the semantic feature extraction capability of TextCNN with

the interpretable structure of KANLinear, this paper proposes a novel model
architecture called CAN, as illustrated in Figure 4. The architectural design
is as follows:

• Input Processing Stage: The input text is first converted into word
vectors and fed into the TextCNN module via an embedding layer.

• Feature Extraction Stage: Multiple convolution kernels of different
sizes are used to perform 2D convolution on the word vectors to ex-
tract local features from the text. These features are then compressed
through max-pooling to form a fixed-length semantic representation.
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• KANLinear Integration Stage: The high-dimensional feature vec-
tor output from TextCNN is treated as a multivariate input. The
structural concept of KANLinear is introduced to perform structured
univariate decomposition and recombination of these features. This
stage simulates the decomposition and composition mechanisms in the
Kolmogorov-Arnold theorem, enhancing the model’s ability to repre-
sent the intrinsic structure of the features.

• Output Stage: The features integrated by the KANLinear module are
passed into a fully connected layer and a softmax function to output
the final bug category.

This fusion approach not only retains TextCNN’s efficient semantic in-
formation extraction capability, but also enhances the model’s expression
and interpretability of high-order feature relationships through KANLinear’s
structural decomposition.
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Figure 4: The Framework of CAN Model

2.5. Performance Indicators

To answer RQ1 and RQ2, we evaluate the models using four performance
indicators. Their importance varies according to the research focus of this
study, identifying extrinsic bug reports, and the degree of class imbalance in
the datasets.

2.5.1. F1-Score

In the context of extrinsic bug report identification, the F1-score is the
most important metric, as it directly measures the overall ability of the model
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to identify extrinsic bug reports (the positive class). It is the harmonic mean
of Precision and Recall :

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
, (3)

F1-score =
2× Recall× Precision

Recall + Precision
(4)

A higher F1-score indicates a better balance between correctly detecting
extrinsic bug reports and avoiding false positives.

2.5.2. Accuracy (ACC)

Accuracy measures the proportion of correctly classified instances among
all predictions:

ACC =
TP + TN

TP + TN + FP + FN
(5)

2.5.3. Matthews Correlation Coefficient (MCC)

The MCC is a balanced evaluation metric that considers both the positive
and negative classes equally, with values in the range [−1, 1]. Compared with
Accuracy, MCC is more informative when the dataset is highly imbalanced,
as it penalizes trivial “predict-all-majority” strategies:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(6)

Since our datasets are not severely imbalanced, as the ratio of positive
(extrinsic) to negative (intrinsic) is 2:3, Accuracy can still be a useful overall
performance metric. Note that both Accuracy and MCC are less critical than
F1.

2.5.4. Area Under the ROC Curve (AUC-ROC)

AUC-ROC measures the model’s discrimination ability across all clas-
sification thresholds. While it is threshold-independent and useful for un-
derstanding boundary behavior, studies in bug prediction have noted that
AUC-ROC may not directly reflect practical classification performance at a
specific decision threshold [18]. In our study, we consider it the least impor-
tant among the four metrics, though we still report it for completeness.
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3. Experimental Results and Analysis

This section addresses the questions raised in Section 3 through experi-
mental results. To investigate the performance of text classification models
in identifying extrinsic bugs from bug reports, we employed six different text
classification algorithms and applied them to our extracted dataset. To re-
duce the impact of experimental randomness, we repeated the experiments
10 times. The performance of the models was evaluated using the metrics
outlined in Section 4.4.

3.1. RQ1: How effective are text classification models in identifying extrinsic
bugs through bug reports?

TextCNN BERT CodeBERT CodeT5 PLBART CAN
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(a) The box plots of F1 values

TextCNN BERT CodeBERT CodeT5 PLBART CAN

0.71

0.72

0.73

0.74

0.75

0.76

0.7407

0.7327

0.7465

0.7194

0.738

0.75

(b) The box plots of ACC values
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(c) The box plots of MCC values
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Figure 5: Performance of the Six Classification Models

Figure 5 presents box plots of the evaluation metrics for all models under
optimal parameters. Note that F1-score is emphasized due to its primary
relevance in evaluating extrinsic bug identification performance. From the
F1 score box plot, the CAN model achieves the best minimum and maximum
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performance with a median of 0.807. TextCNN, BERT and PLBART fol-
low with medians of 0.8044, 0.804 and 0.8012, respectively. CodeBERT and
CodeT5 have F1 medians that do not exceed 0.8. From the box plot of ACC,
the median accuracy of all models exceeds 0.7. The CAN model performs
the best, with a median of 0.75. CodeBERT follows closely with a median
of 0.7465, although it has two potential outliers. CodeT5 shows the poorest
performance, with a median of only 0.7194. In the AUC box plot, Code-
BERT and CAN perform excellently in classifying boundary identification,
with median AUCs of 0.7413 and 0.7182, respectively. BERT, CodeT5, and
PLBART have relatively lower AUC levels, with medians of 0.6942, 0.6944,
and 0.6971, respectively. In the MCC box plot, most models have medians
above 0.42, but CodeT5 performs relatively poorly with a median of only
0.3996. CodeBERT and CAN show stronger MCC scores, with medians of
0.4762 and 0.4637, respectively, though CodeBERT has a potential outlier.

In summary, the overall performance of CAN and CodeBERT is the best.
The CAN model maintains strong performance across all evaluation metrics,
while CodeBERT is particularly outstanding in boundary recognition capa-
bility. In contrast, while TextCNN and PLBART perform well in some met-
rics, their overall stability and classification performance are slightly weaker.

Table 3: Statistical Significance and Effect Size between CAN and CodeBERT

Metric p-value Significance Effect Size r Effect Level

F1-score† 0.0003 *** 0.7691 Large

Accuracy† 0.0513 ns 0.3719 Medium

MCC‡ 0.1061 ns 0.2874 Small

AUC-ROC‡ 0.0004 *** 0.7606 Large

† CAN vs. CodeBERT, ‡ CodeBERT vs. CAN

Significance markers: most significant (***) p < 0.001, highly significant (**) 0.001 ≤ p < 0.01’,
significant (*) 0.01 ≤ p < 0.05, otherwise “ns” (no significance).

Effect size levels: Large r > 0.5, Medium 0.3 < r ≤ 0.5, Small 0.1 < r ≤ 0.3, otherwise Negligible.

To statistically validate the performance difference between CAN and
CodeBERT, we performed a one-sided non-parametric Wilcoxon Rank-
Sum test (Mann–Whitney U Test) across 10 repeated runs and computed
the effect size r. Specifically, r is computed from the standardized z-score
of the Wilcoxon Rank-Sum test using the formula r = |z|√

N
, where N denotes
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the total number of observations across both groups.
The results (Table 3) show that CAN’s F1-score is significantly higher

than CodeBERT’s (p = 0.0003, ***, r = 0.7691, Large effect). This pro-
vides strong statistical evidence that CAN is better at identifying extrinsic
bug reports. In contrast, Accuracy and MCC differences between CAN and
CodeBERT are not statistically significant, suggesting a comparable overall
classification balance. For AUC-ROC, CodeBERT significantly outperforms
CAN (p = 0.0004, Large effect). However, as discussed in Section 2.5, this
advantage mainly reflects potential performance at alternative thresholds
and does not outweigh CAN’s superiority in F1-score at the standard 0.5
threshold.

Overall, while CodeBERT benefits from pretraining on large-scale code–text
corpora (potentially including overlaps with OpenStack data), our from-
scratch CAN model achieves significantly better F1-score in this task, in-
dicating stronger practical utility for extrinsic bug report identification.

RQ1 Conclusion: Text classification models can effectively identify
extrinsic bugs from bug reports. CAN demonstrates the best perfor-
mance in terms of the most important metric (F1-score), with a sta-
tistically significant and large effect size advantage over CodeBERT,
despite the latter’s edge in AUC-ROC.

3.2. RQ2: Can datasets that include code as text improve the performance
of models in identifying extrinsic bugs?

To analyze RQ2, we conducted experiments using both code-containing
and code-absent datasets. We performed 10 rounds of experiments for each,
using consistent model parameters as described in Section 3.1. The median
values of each metric were computed and compared.

We observe from the box plot (Figure 6) that the CAN model demon-
strates strong stability, despite the presence of multiple outliers. In contrast,
the CodeBERT model exhibits greater variability in performance, particu-
larly in the ACC and F1 metrics, where fluctuations are significant. For the
F1 score, no model achieves a median above 0.8. The BERT model performs
the best, with a median F1 score of 0.7892, followed by CAN at 0.7859.
TextCNN and CodeBERT perform worse, with median F1 scores of 0.7622
and 0.7626, respectively. In terms of ACC, all models achieve a median
accuracy above 0.7. Among these models, BERT performs the best, with
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Figure 6: Performance of the Six Classification Models on Code-Absent Dataset

a median ACC of 0.7270, followed by CAN. The CodeT5 model performs
the worst, with a median ACC of only 0.7075. Regarding AUC, the Code-
BERT model achieves the highest median AUC of 0.7166, followed closely by
PLBART with 0.7028 and BERT with 0.7002. Other models remain below
0.7 in this metric. Notably, the CAN model has three outliers, potentially
impacting its overall stability. In terms of MCC, most models achieve a
median above 0.40. The CodeT5 model performs the worst, with a median
MCC of only 0.3823. CodeBERT outperforms other models in this metric,
achieving a median MCC of 0.4285. Both BERT and CAN have a median
MCC of 0.409, demonstrating relatively strong overall performance.

To further analyze the impact of source code on model performance, we
use histograms for comparison, as shown in Figure 7.

The results from the histogram and data analysis clearly indicate that
the performance of all models has deteriorated in F1 and ACC scores, with
TextCNN, CAN, and CodeBERT exhibiting the most substantial declines.
This suggests that code data was instrumental in the training and classifica-
tion of these models. In terms of AUC, BERT and PLBART exhibit slight
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Figure 7: Model Performance Comparison on Code-Containing vs. Code-Absent Datasets

improvements; however, the overall impact is marginal and does not offset
the declines observed in other metrics.

RQ2 Conclusion: The experimental results indicate that incorpo-
rating code into the dataset enhances all models’ ability to identify
extrinsic bugs. Conversely, removing source code data detrimentally
impacts the overall performance of the models.

3.3. RQ3: How can the predictions of the proposed CAN model for identifying
extrinsic bugs from bug reports be explained?

To address research question RQ3, we employed the LIME method to
evaluate the feature importance of correctly predicted instances. Bug reports
containing source code were selected as the dataset, which was then divided
into training and test sets. The CAN model was subsequently trained using
this dataset. After training, each instance in the test dataset was fed into
the model, and LIME was utilized to extract and interpret the ten most
important textual features.
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Figure 8: The Text Features Distribution Diagram of 8 Instances Predicted by CAN Model
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By analyzing the visualization results of feature explanations for all in-
stances in the test dataset (as shown in Figure 8), it was observed that certain
specific terms had a significant impact on predicting extrinsic bugs, such as
“test” illustrated in subfigures (b), (f), and (g); “tests” in subfigures (c), (e),
and (f), “api” in subfigures (b) and (g). In contrast, words like “py” and
“line” were more likely to lead the model toward predicting intrinsic bugs,
as shown in subfigures (a), (d), and (h). Further examination of several bug
reports revealed that these key textual features frequently appeared in ex-
trinsic bug reports, thereby playing a crucial role in the model’s prediction
outcomes.

We subsequently conducted a detailed examination of these specific bug
report instances. The results indicate that: “test” often appears in contexts
related to testing, suggesting that the bug may be due to changes in test cases
or test environments. “api” refers to interactions between extrinsic systems
or services and the software. Bug reports frequently describe problems such
as API call failures or interface incompatibilities. “py” is commonly found
in contexts related to Python code or scripts. Intrinsic bugs often involve
issues in code implementation or errors discovered during the development
process. “line” often refers to specific code line numbers mentioned in bug
reports, which helps developers quickly locate the issue in the code.

RQ3 Conclusion: Experimental results indicate that words such as
“line” and “py” significantly impact the prediction of intrinsic bugs,
while terms like “test” and “api” have a substantial influence on the
prediction of extrinsic bugs.

4. Discussion and Implication

4.1. Discussion1: The impact of batch size and pad size on model perfor-
mance

This experiment investigates the impact of batch size and pad size on
model performance. Different combinations of batch size and pad size were
tested, as detailed below:

• batch size: 16, 32

• pad size: 64, 128, 256, 512
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Multiple rounds of experiments were conducted to observe their effects
on the models’ F1 score (the primary evaluation metric), as well as on ACC,
MCC, and AUC. The specific experimental results are shown in Table 4. The
bold values indicate the best performance achieved under each metric within
the tested settings. Due to GPU resource limitations, the experiment with a
batch size of 32 and a pad size of 512 could not be completed, and data for
this combination is missing.

From the analysis of the experimental data, the following conclusions can
be drawn:

• Pad size has a significant impact on model performance: In
most models, as pad size increases, F1, ACC, MCC, and AUC met-
rics tend to rise. Specifically, CodeBERT, CodeT5, and CAN models
perform best with a pad size of 256, but when pad size is increased
to 512, performance decreases, likely due to the introduction of more
padding, which increases noise. However, TextCNN, PLBART, and
BERT models continued to improve as pad size increased further.

• The impact of batch size is relatively small: Overall, models
performed better with a batch size of 16 compared to a batch size of
32. This may be because a smaller batch size helps the model learn
sample features in more detail, but it also increases training time.

4.2. Discussion2: The effectiveness of each component in our proposed CAN
model

To comprehensively evaluate the actual contribution of each key com-
ponent in the CAN model to overall performance, we designed a series of
ablation experiments. Under a consistent input configuration, we either re-
placed or removed the TextCNN feature extraction module and the KANLin-
ear classification module, and observed the performance variations, thereby
verifying the impact of each sub-module on the final classification results.

Table 5 presents the performance comparison of different combinations of
feature extraction and classification modules. Similarly, bold values mark
the highest scores obtained for each metric. Overall, the combination of
TextCNN + KANLinear achieved the best results across all evaluation met-
rics (F1, ACC, MCC, AUC), with an F1 score of 0.8072, an accuracy of
0.7492, an MCC of 0.4610, and an AUC of 0.7175. When replacing the KAN-
Linear classifier with a simple linear layer, the TextCNN-based model still
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Table 4: Impact of Batch Size and Pad Size on Model Performance

Model batch size pad size ACC AUC F1 MCC

BERT

16

64 0.7117 0.6839 0.7730 0.3864
128 0.7120 0.6889 0.7697 0.3911
256 0.7239 0.6884 0.7891 0.4059
512 0.7335 0.6943 0.7996 0.4266

64
64 0.6819 0.6563 0.7331 0.3410
128 0.7011 0.6786 0.7604 0.3681
256 0.7296 0.6973 0.7916 0.4167

CodeBERT

16

64 0.6905 0.7003 0.7222 0.3915
128 0.7259 0.7332 0.7590 0.4546
256 0.7410 0.7375 0.7810 0.4682
512 0.7335 0.6943 0.7996 0.4266

64
64 0.6975 0.6931 0.7426 0.3817
128 0.7228 0.7145 0.7692 0.4244
256 0.7153 0.6931 0.7724 0.3961

CodeT5

16

64 0.7122 0.6753 0.7811 0.3789
128 0.7128 0.6906 0.7705 0.3886
256 0.7181 0.6899 0.7696 0.3950
512 0.7138 0.6891 0.7727 0.3913

64
64 0.6612 0.6078 0.7536 0.2512
128 0.6976 0.6641 0.7672 0.3469
256 0.6856 0.6474 0.7612 0.3166

PLBART

16

64 0.7107 0.6893 0.7794 0.3868
128 0.7150 0.6902 0.7836 0.3979
256 0.7210 0.6894 0.7850 0.3998
512 0.7357 0.6979 0.8001 0.4309

64
64 0.7023 0.6865 0.7658 0.3709
128 0.7112 0.6859 0.7761 0.3845
256 0.7211 0.6950 0.7844 0.4015

TextCNN

16

64 0.7284 0.6929 0.7932 0.4143
128 0.7260 0.6973 0.7865 0.4120
256 0.7391 0.7056 0.8004 0.4381
512 0.7404 0.7051 0.8026 0.4410

64
64 0.7269 0.6933 0.7904 0.4123
128 0.7327 0.6955 0.7977 0.4236
256 0.7369 0.7088 0.7943 0.4394

CAN

16

64 0.7207 0.6860 0.7866 0.3966
128 0.7269 0.6987 0.7868 0.4140
256 0.7492 0.7175 0.8072 0.4610
512 0.7468 0.7147 0.8057 0.4554

64
64 0.7208 0.6978 0.7775 0.4064
128 0.7282 0.6966 0.7903 0.4148
256 0.7399 0.7121 0.7972 0.4420
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Table 5: Effectiveness of Each Component in the CAN Model

Feature Extractor Classifier ACC AUC F1 MCC

TextCNN KANLinear 0.7492 0.7175 0.8072 0.4610
TextCNN Linear 0.7404 0.7051 0.8026 0.4410
DPCNN KANLinear 0.7073 0.6691 0.7797 0.3547
DPCNN Linear 0.6813 0.6518 0.7646 0.3222

maintained relatively high performance (e.g., F1 = 0.8026, ACC = 0.7404),
but all metrics showed slight declines, indicating that the KANLinear module
indeed enhances the model’s classification capability.

Furthermore, we also introduced DPCNN [19] as an alternative feature
extractor to validate the generality of the KANLinear module. DPCNN
(Deep Pyramid Convolutional Neural Network) is a low-complexity word-
level deep CNN architecture designed for text categorization, capable of cap-
turing long-range dependencies and global text representations through a
pyramidal structure with relatively low computational cost. It has been
shown to outperform several state-of-the-art models on benchmark datasets
for sentiment classification and topic categorization. In our experiments,
DPCNN + KANLinear outperformed DPCNN + Linear, particularly in ACC
and MCC (improving by 3.82% and 10.09%, respectively), further confirming
the effectiveness of the KANLinear classifier across different feature extrac-
tors. However, the overall performance of DPCNN in our task was still lower
than TextCNN, which may be due to weaker structural suitability for the
specific characteristics of bug reports classification.

In summary, the results demonstrate that TextCNN and KANLinear play
crucial roles in feature extraction and classification modeling, respectively.
Their combination yields the best classification performance, thereby vali-
dating the rationality and effectiveness of the CAN model architecture.

4.3. Implication

Our findings indicate that text classification models are highly effective
in identifying and predicting extrinsic bugs. Among them, the CAN model
performed the best, achieving an ACC of 0.7492 and an F1 score of 0.8072.
Consequently, this model was utilized in RQ3 experiments. Analysis of fea-
ture importance for test dataset instances revealed that certain key textual
features significantly affect the prediction of extrinsic/intrinsic bugs. As illus-
trated in Figure 8, these crucial semantic features can differentiate between
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intrinsic and extrinsic bugs but may sometimes lead to incorrect predictions.
This necessitates further exploration into text feature engineering and model
tuning to enhance robustness and accuracy.

Moreover, our research confirms that including source code in bug reports
can enhance model prediction performance. Bug reports created in ITSs often
include descriptions and stack traces (optional). The description, recorded
by the submitter, explains observed behavior during a crash and details the
bug. Stack traces are a series of function calls from the memory stack during
the crash. In practice, many bug report submitters only include stack traces
or source code as the bug description. Nayrolles et al. [20] demonstrated
that stack traces are useful for understanding bugs. Inspired by this, and
given that stack traces may provide valuable information, we hypothesized
that other technical details (e.g., source code) might also aid in identifying
extrinsic bugs and designed experiments accordingly.

It is important to note that our approach might not effectively extract
useful information from source code or stack traces that aids in identifying
extrinsic bugs. We treated the source code merely as text, meaning that
its deeper semantic information has not been fully explored. Programs have
specific syntactic structures and rich semantic information hidden in abstract
syntax trees (AST), which are crucial representations of source code. There-
fore, we believe further exploration is needed to utilize structural information
within source code. We need to find corresponding links in the software sys-
tem to more accurately determine whether a bug is intrinsic or extrinsic,
rather than treating the source code as plain text.

Over the past 20 years, many studies have used automated techniques
to collect JIT bug prediction datasets to address bug repair submissions,
bug-introducing changes, and bug reports. These datasets have been used
to train JIT bug prediction models. However, Rodŕıguez Pérez et al. [3]
demonstrated that JIT bug prediction models trained only on intrinsic bugs
can more accurately reflect real-world scenarios, as indicated by different
(usually higher) AUC values. This suggests that extrinsic bugs should be
excluded to reduce the predictive capacity loss of JIT bug prediction mod-
els. Consequently, hundreds of studies on JIT bug prediction [21] might be
less accurate than expected, as they did not use data distinguishing between
intrinsic and extrinsic bugs for model training. Researchers and practition-
ers should ensure high-quality data to avoid noise affecting model training.
Therefore, we recommend adding an intrinsic/extrinsic field to new bug re-
ports and using better-performing classifiers to automatically generate and
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label historical data.

5. Threats to Validity

5.1. Internal Validity

The first threat to internal validity primarily stems from potential er-
rors in our experiments and biases introduced by randomization. To address
this threat, we manually checked the completeness of the extracted bug re-
ports and the labels of the datasets used in the study. We then re-evaluated
the implementation process and reported the average performance across 10
experiments. Additionally, issues related to the mapping dictionary we de-
signed also pose a threat. Upon examining the bug reports in the dataset, we
found many stop words, such as “hello”, “why”, and “how”, that do not pro-
vide useful textual features and negatively affect the prediction of extrinsic
bugs. These stop words were removed before mapping string tokens.

5.2. External Validity

The primary threat to external validity concerns the generalizability of
our research findings. Our dataset consists of only 1,880 issues from the
OpenStack project and was manually labeled by two master’s students spe-
cializing in Computer Science and Technology. Due to the relatively small
size of the dataset and its extraction from a single project, the consistency
of the labels requires further investigation. Moreover, since OpenStack is a
large-scale Python-based open-source project, the results may be biased to-
ward the characteristics of Python projects. This limits the generalizability
of our findings to projects developed in other programming languages such
as Java, C++, or JavaScript, where bug report structures, vocabulary, and
code-related expressions may differ. Additionally, involving more experts in
the labeling process and applying semi-supervised or active learning strate-
gies will help improve the reliability and scalability of the labeling process in
diverse contexts.

5.3. Construct Validity

Threats to construct validity concern whether the evaluation metrics ac-
curately reflect the prediction performance of classifiers. ACC reflects the
proportion of correct predictions made by the model. However, this metric
assumes that different classes are balanced, meaning it becomes unreliable
when the dataset is imbalanced. F1-score is the harmonic mean of precision
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and recall, but it cannot fully address cases where one model has high preci-
sion but low recall, while another has low precision but high recall, yet both
achieve similar F1-scores. In contrast, AUC and MCC can mitigate these
issues, as they are not sensitive to class imbalances and do not depend on
threshold selection. Therefore, we use four indicators—F1, ACC, MCC, and
AUC—to comprehensively evaluate the performance of the models.

Another construct validity threat relates to the interpretability method
used in our study. We adopted LIME primarily because of its adoption
in prior JIT bug prediction research (e.g., JITLine) and supporting empiri-
cal findings that classifier-agnostic methods such as LIME, SHAP [22], and
BreakDown [23] can yield consistent feature importance rankings [24]. While
we acknowledge that alternative methods like SHAP offer stronger theoretical
grounding and may produce more stable explanations, incorporating multiple
explainers would require significant additional experimental effort and com-
putational resources. Given that our LIME-based results, combined with
manual inspection, produce reasonable and coherent explanations, we did
not re-implement the analysis with other interpretability tools. We explic-
itly acknowledge this as a limitation to encourage future studies to perform
more comprehensive and systematic comparative evaluations of multiple ex-
planation techniques in this domain.

6. Related Work

6.1. Just-In-Time Bug Prediction

The concept of Just-In-Time (JIT) bug prediction was first introduced by
Mockus and Weiss [25], who designed change metrics to predict whether a
software change would introduce a bug. Traditional approaches relied heav-
ily on machine learning models that assumed the characteristics of past and
future bug-introducing changes (BICs) are similar. Early studies extracted
predictive attributes from version control systems (VCSs), issue tracking sys-
tems (ITSs) [26, 27, 28], and code review systems [29, 30] to train classi-
fiers [31, 32].

With the rise of deep learning, models such as DeepJIT, the first deep
learning framework for JIT prediction based on TextCNN [14], and JITGNN,
a graph neural network-based approach, demonstrated the ability to capture
complex structural and semantic information in code changes. More recent
methods have leveraged pre-trained models of code to capture richer semantic
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and contextual information. JIT-Fine [33] and JIT-Smart [34] adopt Code-
BERT [4] multi-task learning to jointly address bug prediction and localiza-
tion, significantly improving performance over traditional baselines. Later,
general-purpose pre-trained models of code such as PLBART [5] and CodeT5
[6] have shown strong performance across code understanding and generation
tasks. These models represent distinct categories of deep learning approaches
and provide strong baselines for evaluating text classification in software engi-
neering, making them natural choices for our experiments designed for RQ1
and RQ2.

Interpretability has also gained attention in JIT bug prediction. JITLine,
for example, applied LIME to generate line-level bug localization explana-
tions in addition to predictions. Yang et al. [24] conducted a large-scale em-
pirical study showing that classifier-agnostic techniques such as LIME, Break-
Down, and SHAP yield consistent feature importance rankings, reinforcing
their reliability. This interpretability perspective provides the methodologi-
cal basis for our RQ3, where we use LIME to explain the predictions of our
proposed CAN model.

6.2. Bug Reports and Extrinsic Bug Identification

Beyond code change metrics, bug reports in ITS contain rich textual
information that can be leveraged for bug prediction. A growing body of
work has examined the classification of bug origins, the quality of bug reports,
and their impact on predictive modeling.

Several studies [1, 2, 3] distinguish between intrinsic bugs (originating
from internal code changes and associated with a BIC) and extrinsic bugs
(originating from external factors such as API changes, dependency updates,
or environmental variations, lacking a BIC but having a first-failing change).
These works highlight the limitations of SZZ-based BIC identification and
demonstrate that removing extrinsic bugs from datasets can significantly im-
prove JIT model performance. Our RQ1 is directly motivated by these find-
ings: rather than manually filtering extrinsic bugs, we aim to automatically
identify them from bug report contents.

Another related challenge is misclassification in bug reports for bug pre-
diction and localization. Prior studies [35, 36] show that reports mislabeled
as bugs but actually describing feature requests, documentation updates, or
other maintenance tasks can distort both bug prediction and localization
results. Understanding and mitigating such noise is essential for building
robust classification models.
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The quality of bug reports has also been studied extensively. High-quality
reports, those including steps to reproduce stack traces, and particularly code
examples, have been shown to facilitate bug localization and reduce fixing
time [11, 12, 13]. For example, Zimmermann et al. [11] found that developers
favored bug reports containing code snippets or stack traces, as these struc-
tured elements often clarified the underlying cause of a bug. Similarly, Mills
et al. [12] demonstrated that bug reports with explicit localization hints,
including code fragments, significantly improved the accuracy of bug local-
ization tasks. Furthermore, Zhang et al. [13] reported that most contributors
for both desktop software and mobile apps believed that stack traces, code
examples, and patches shortened bug-fixing time and revealed bug causes
more clearly. These insights form the foundation for our RQ2, where we
investigate whether incorporating code as text in datasets improves extrinsic
bug identification.

In conclusion, previous works have either (1) classified bug origins and
analyzed their impact on prediction models [1, 2, 3], (2) studied quality indi-
cators in bug reports [11] and their role in localization performance [12, 13],
or (3) investigated the negative effects of mislabeled reports [35, 36]. How-
ever, none has addressed the automatic identification of extrinsic bugs from
bug reports using modern text classification models. Our work fills this gap
by systematically exploring the effectiveness of representative deep learning-
based classification models in extrinsic bug classification, examining the ef-
fect of including code snippets in bug report contents, and applying LIME
to explain predictions of our proposed CAN model combining TextCNN and
KAN.

7. Conclusion and Future Work

Bug reports are created by software developers within an ITS to describe
technical details such as the cause, symptoms, severity, and other features
of bugs. An ITS includes bug reports for both intrinsic and extrinsic bugs.
Intrinsic bugs refer to errors with explicit BICs in the VCS. Extrinsic bugs
are primarily caused by external factors of the project and cannot be matched
with a BIC.

Rodŕıguez-Pérez et al. [3] demonstrated through a case study of the
OpenStack system that intrinsic and extrinsic bugs are different. JIT bug
prediction models trained only on intrinsic bugs can more accurately reflect
the real world, as indicated by higher AUC values. This suggests that ex-
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trinsic bugs should be excluded to minimize the loss of predictive power
in JIT bug prediction models. Consequently, hundreds of studies on JIT
bug prediction [21] may not be as accurate as possible because they did not
use data distinguishing between intrinsic and extrinsic bugs to train their
models. Manual analysis of bugs and their reports is labor-intensive and
time-consuming, and models trained solely on intrinsic bugs typically achieve
higher AUC scores. Therefore, we use various text classification techniques to
automate the classification of bugs into intrinsic or external categories. Our
experiments validate the effectiveness of different text classification models
in distinguishing between intrinsic and extrinsic bugs. The results show that
incorporating source code in bug reports leads to improved classification per-
formance. Specifically, the CAN model performed the best in classification,
with an ACC of 0.7492 and an F1 score of 0.8072.

Our research also indicates that certain key semantic features play a sig-
nificant role in distinguishing between intrinsic and extrinsic bugs. For exam-
ple, words like “test” and “api” have a notable impact on predicting extrinsic
bugs, while “line” and “py” are more influential in predicting intrinsic bugs.
Additionally, the results reveal that source code information can help iden-
tify extrinsic bugs in some cases, but its deeper semantic information has not
been fully exploited. Future research should further explore how to leverage
structural information in source code.

Future work includes: (1) Applying our method to datasets from other
ecosystems, including Java-based projects (e.g., JDT, Platform) and cross-
language repositories, to evaluate the robustness of the proposed model across
different language domains; (2) Utilizing more semi-supervised and unsuper-
vised learning methods to identify extrinsic bugs, thereby reducing the cost of
manual labeling; (3) Exploring the effectiveness of our methods in real-world
development scenarios.
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