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Due to the accelerating code development and improving code maintainability, code

generation has recently attracted more and more attention. In the model of generating
program source code from natural language, the most effective method is to generate an

intermediate architecture (such as Abstract Syntax Tree) combined with a deep learning

model. However, these models have the following problems: 1. The data information is
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underutilized and the correlation between samples is not considered. 2. Lack of the ability
to memorize large and complex structures, so that complex codes cannot be generated

correctly. To this end, we propose HRCODE model, a code generation architecture based

on Hybrid of structural and semantic features Retrieval CODE model. We transform
the natural language description into an intermediate structure with structural features.

Then, the NL and the intermediate structure are embedded into a vector through weight
mixing, and we use the similarity between each vector to retrieve the most relevant

samples. Finally, the new input is brought into the PLBART model to generate code.

Experiments show that HRCODE is at least 4.7% higher than the state-of-the-art models
in the ACC indicator and at least 10.3% higher in the BLEU-4 indicator. We have

released our code at https://github.com/jesokang/HRCODE.

Keywords: Code Generation; Deep Learning; Program Comprehension.

1. Introduction

Code generation is a extremely challenging task of converting natural language(NL)

descriptions into codes[1][2][3]. The major challenge encountered in this task is that

the input and output data are cross-language. Besides, the NL structure is more

arbitrary, but the generated code needs a clear and executable structure output.

Accordingly, it is difficult to construct an effective generative model for code gen-

eration. However, generating uniformly structured code through natural language

description can accelerate the development efficiency of programmers and improve

the maintainability of the code. Therefore, code generation is an important area

and worthy of in-depth research.

In response, generating code from natural language has been actively studied.

Researchers constructed traditional generative models[4][5][6] through static gram-

matical rules. With the rapid development of deep learning, more and more re-

searchers use deep learning technology for program generation. Jia et al.[7] and

Locascio et al.[8] use sequence-to-sequence model to convert the target code into a

sequence of symbols. However, Sequential approaches cannot ensure that the gener-

ated code is syntactically and structurally correct. To solve this problem, researchers

have proposed a method of transforming natural language description into the in-

termediate structure of the code, and then using the structure to generate the code.

Yin et al.[9] and Rabinovich et al.[2] represent the code as Abstract Syntax Tree

(AST), which is effective in improving accuracy. Li Dong[10] proposed a method

of generating rough sketches, which masked fine-grained information (such as vari-

able names). Then, the generated model fills in the missing details by combining

the structure of the sketch. These methods are effective as it enforces the well-

formedness of the output code. However, the number of nodes in the tree usually

greatly exceeds the length described by NL. Therefore, structure-based methods

usually cannot generate correct codes for low frequency words.

Afterwards, Hayati et al.[11] propose RECODE model which inspired by ma-

chine translation[12]. Retrieval and neural models[13][14] have proved to be success-

ful in processing rare words, so the model effectively improves the accuracy through

NL retrieval. However, RECODE model use edit distance to calculate the similarity
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between samples, which is not appropriate to retrieve. Besides, the current retrieval

methods do not fully utilize the existing information.

To address these issues, we propose a novel framework to generate better codes

by using the hybrid retrieval method of NL and code intermediate structure. We

use TRANX model[15] to transform NL utterances into formal meaning represen-

tations(MR), which is intermediate structure of code. We convert the NL and MR

embeddings into vectors, and hybridize the two features to vector characterize each

sample. Then, the hybrid vector will be used to retrieve the training samples. Fi-

nally, we bring the new input into the model to generate code. To evaluate the

performance of our proposed model, we conduct experiments on real-world dataset.

Compared with the six the state-of-the-art models, our model can improve from

3.7% to 10.5% at metric of accuracy and can promote BLEU-4 from 4.8% to 6.2%.

The main contributions of this paper are as follows:

• We propose a new framework. The model retrieval based approach

HRCODE to improve the accuracy and BLEU-4 performance for code gen-

eration. Specifically, we introduce a new retrieval code strategy. Then, we

generate the code by more efficient model input.

• We design a new retrieval strategy. We convert natural language and struc-

tural feature embeddings into hybrid feature vector representations, which

can effectively retrieve more relevant codes.

• We evaluate our proposed model on real-world dataset. Experimental re-

sults show that HRCODE achieves the best performance compared with

the state-of-the-art models.

The rest of this paper is organized as follows: Section 2 discusses related work.

The proposed apporach is explained in Section 3. Experimental setup is introduced

in Section 4. Experimental results and discussion are introduced in Section 5. Section

6 introduces threats to validity. Finally, conclusions and future work are presented

in Section 7.

2. Related Work

2.1. Code Generation

Program generation is to automatically generate code according to the requirements

given by the user. In a specific programming language, algorithms can replace pro-

grammers to complete simple or specific code, such as sql statements[16][17]. Tradi-

tional program generation methods[18][19][20] require programmers to design logic

specifications, so that the machine can automatically generate source code based

on these logic specifications. However, these methods not only have higher require-

ments for programmers, but the generated code is often single in function and

cannot complete complex tasks. To solve this problem, researchers use data-driven

deep learning methods to generate code. Ling et al.[1] proposed a method based

on a network of latent predictors to generate source code in Python or Java. This
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method can achieve an average BLEU Score of 0.776 on data sets such as Django.

To the best of our knowledge, it is the first program to generate source code in

a general-purpose programming language. Yin and Neubig[9] proposed a syntactic

neural model, which can transform NL descriptions into intermediate framework

Actions to generate AST, the model uses AST to generate code finally. Later, they

proposed the TRANX[15] model, which has better generalization and extended

Python to other programming languages. Coarse-to-Fine model[10] also uses the

intermediate architecture. Li Dong et al. generate a rough sketch through given

input sentence, which masks low-level information (such as variable names and pa-

rameters). Then, Coarse-to-Fine model fills in the missing details by considering

the natural language input and the sketch itself. Rabinovich et al.[2] use multiple

decoders in code generation, where different types of nodes in the AST are gener-

ated by different decoders. Pengcheng Yin et al.[21] proposed STRUCTVAE model,

which is a variational automatic coding model for semi-supervised semantic anal-

ysis. Hayati et al.[11] established a method called ReCode. The RECODE model

can effectively use the nearest neighbors to generate code, and solve the problem of

rare words by retrieving the most relevant samples successfully. TRANX-R2L[22] is

a modified version of the TRANX model, which can optimize the selector through

reinforcement learning and solve the problem of non-differentiable selection of the

expansion order.

The above models all generate code through natural language description, and

there is also a kind of program generation based on input and output examples.

For example, deep learning[23][24] is used to simulate the execution trajectory of

the program, thereby generating the statements and parameters required for the

execution of the program.

2.2. Code Retrieval

Code retrieval is an important research problem in the field of software engineering,

and its main task is to retrieve and reuse codes. Earlier, code retrieval focused on

natural language descriptions, using similarities between natural languages to find

the most relevant samples. Haiduc et al.[25] proposed the Refoqus model, which

can automatically recommend code for a given query after training with samples.

Hill et al.[26] uses the view of NL to search and maintain the source code, and

the method integrates multiple feedback mechanisms into the search result view

to solve the problem of irrelevance of the retrieved samples. Lu et al.[27] further

processed NL information, they proposed a method to expand the query using

synonyms generated by WordNet[28]. This method extracts key natural language

phrases from NL, matches and ranks these phrases with samples. Experiments show

that this method can quickly identify related program elements for invocation or

quickly identify substitute words for query reconstruction. In order to solve the high

time complexity of code retrieval or query language limitation, Keivanloo et al.[29]

proposed a method of discovering working code examples, which can be adopted by
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Internet-scale source code search engines. However, the model that only uses natural

language terms for code search is not ideal because programming concepts do not

always match their syntactic form in the vocabulary. Therefore, people consider

generating intermediate architectures to match codes or include target codes in

calculations. ANNE[30] is a technology that can discover the mapping between

NL’s syntax and programming language terms to find related codes. DeepCS[31]

is a deep learning retrieval model that takes code into consideration. It embeds

NL and code into a vector space of the same dimension through deep learning.

Finally, DeepCS model retrieves related samples using the similarity of vectors.

Iyer et al.[32] proposed CODE-NN model, which uses a long short-term memory

(LSTM)[33] network and pays attention to generating a summary of the relevant

code language. Chen et al.[34] proposed a neural framework BVAE, which uses

the two-way mapping between source code and natural language to improve the

retrieval model. BVAE aims to have two variational autoencoders (VAE)[35] to

model bimodal data: C-VAE for source code and L-VAE for natural language.

3. Proposed Approach

In this section, we will introduces the process of the HRCODE in detail. The

overview of the approach is shown in Fig. 1. HRCODE model can be divided into

three parts. Firstly, we transform the NL data into a action representation which

contains structural features. Then, the model embeds NL and action into fixed-

dimensional vectors. We use the hybrid vector to retrieve the training data. Finally,

the retrieved NL and code will be new input for generation model which we use

PLBART[36] Pre-training model.

In the following, we introduce the process of HRCODE model in detail from the

three aspects of MR structure, Retrieval Model, and Code generation.

3.1. Problem Definition

The goal of code generation is to generate code from natural language. Utterance

is defined as u. We retrieval the max similarity score training sample xi, yi through

structure and semantic retrieval, where i ∈ s. xi represents the natural language of

the sample, yi is corresponding code. Therefore, the input sequence of the model

becomes u ⊕ xi ⊕ yi, where ⊕ denote the sequence concatenation operation. More

formally:

∃i ∈ {1, 2, 3, ...s} : argmax
xi

Score (u, xi) (1)

code : Gen(u⊕ xi ⊕ yi) (2)

where Gen is code generation model, the s represents the number of training

samples.
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Fig. 1. The overview of HRCODE model

3.2. Action Structure

In order to obtain intermediate representations of NL, researchers transduce natu-

ral language into formal meaning representations (MRs). In HRCODE model, we

use the Tranx model to transform NL into an Action set under Abstract Syntax

Description Language(ASDL).

NL: call the function os.chmod with argument dst and mod

t
tf

n Action

t1 root  Expr(expr value)

t2

t3

f1  Call(expr func, expr* args,

keyword* keywords)

t4

t5

t6

t7

t8

t9

t10

f2  Attribute(expr value, identifier attr)

Name(identifier id)

GENTOKEN[os]

f5

f7

f6 GENTOKEN[chmod]

f3 Name(identifier id)

GENTOKEN[dst]f8

f4

f9

Name(identifier id)

GENTOKEN[mode]

t4

t1

f1

t2

t3

t5

t6 t7

t8

t9

t10

f2

f3

f4

f5 f6 

f7 f8
f9

value

func

args

value attr

id
id

id

Attribute

Call

Expr

Name chmod

os dst mode

Name Name

keywords

Action to AST

Fig. 2. An example of NL-Action-AST.

Tranx model is a transition system in essence, it parses each utterance into a for-
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mal MR which represented as general-purpose programming languages. As shown in

Figure 2, this transition system can map the NL utterance into an Abstract Syntax

Tree(AST) using a sequence of tree-construction actions. In the action table, these

tree-construction actions contain rich structural features. The generation process

derives the AST from the beginning of a single root node, and traversals according

to the depth-first order of AST. The model will select one of the following three

types of actions to expand the frontier field nft of the derivation:

APPLYCONSTR[c] actions apply a constructor c to the opening composite

frontier field which has the same type as c, populating the opening node using the

fields in c. If the frontier field has sequential cardinality, the action appends the

constructor to the list of constructors held by the field.

REDUCE actions represent the completion of the optional (?) or multiple (∗)
cardinalities generation in APPLYCONSTR[c].

GENTOKEN[v] actions is used to construct the leaf nodes of AST. In Figure 2,

the field f8 has type identifier and the value is chmod.

The probability of an APPLYCONSTR[c] action with embedding ac is:

p = (at = APPLY CONSTR[c]|a<t, x) = softmax(atcWs̃t) (3)

REDUCE is treated as a special APPLYCONSTR action. The s̃t is the atten-

tional vector defined as in Luong et al[37].

For GENTOKEN actions, model employs a hybrid approach of generation and

copying, allowing for out-of-vocabulary variable names and literals in NL to be

directly copied to the derivation.

p =(at = GENTOKEN [v]|a<t, x)

= p(gen|at, x)p(v|gen, at, x) + p(copy|at, x)p(v|copy, at, x)
(4)

The probability of p(gen|·) and p(copy|·) are calculated by softmax(Ws̃t). The prob-

ability of generating v from the vocabulary set.

Although, we can choose the generated AST as the structure retrieval part,

the AST would lost important structural information[11]. For example, in figure 2,

[Attribute(expr value, identifier attr)] action will only show Attribute node in AST.

Therefore, we choose actions rather than AST nodes as the structural feature of

the retrieval model.

3.3. Retrieval Part

In previous work[11], the model used the edit distance of NL to calculate the simi-

larity between the training data and the test data. Then, using the similarity score

retrieve relevant samples. There are two shortcomings: 1.The representation of the

sample is rough. 2.Insufficient information for retrieval.

To obtain more effective data representation, we use FastText pre-trained modela

as our embedding model. By vectorizing the tokens of the samples, the model can

ahttps://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.en.vec
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obtain the correlation between the tokens better and improve the accuracy of re-

trieving related data.

For each utterance u, we transform the u into actions by method of Section

3.2. The NL description contains semantics and rare tokens information, and the

actions have the structural characteristics of the data. Embedding these semantic

and structural features into hybrid vectors for sample representation. More formally:

V = α ∗ embed(u) + β ∗ embed(Actions)

α+ β = 1
(5)

where embed() is embedding model, α and β are the hybrid weight. After obtain-

ing the vector representation of each sample, we use the cosine similarity for the

measurement, which is defined as:

∃i ∈ {1, 2, 3, ...s} : argmax
ci

cos(ci, d) =
cTi d

∥ci∥ ∥d∥
(6)

The hybrid vector d is test data, ci is the hybrid vector of train data, s is the number

of train samples. The weight of α and β are hyperparameters, we will discuss them

in the experimental part.

3.4. Code generation

In generation part, we use PLBART model to generate the code. The PLBART

has the same architecture as BARTbase which uses the sequence-to-sequence Trans-

former with 6 layers of encoder and 6 layers of decoder. The only difference is that

BLBART model includes an extra layer of normalization on top of the encoder and

decoder, because this process can stabilize training with FP16 precision[38].

The PLBART is a pre-trained on lots of unlabeled instances, each instance is

corrupted using the noise function f and PLBART predict the original instance x

from f(x). In this task, formally, PLBART is trained to maximize £θ:

£θ =

m∑
i=1

logP (xi|f(xi); θ) (7)

where m is the number of pre-trained dataset. The noise function f can make the

model better learn the syntax and semantics features of the language.

The input to the PLBART model is a text sequence, we spliced the NL de-

scription and the retrieved sample NL description and code as the sequence input

of the model. In the input sequence, we add the special identifiers < nlsep > and

< codeseq > to distinguish them. Finally, the model input is [ NL < nlsep > NL

< codeseq > code].

4. Experimental Setup

This article aims to study the following five research questions.
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• RQ1: Can our model outperform the state-of-the-art models in code gen-

eration of the django dataset?

• RQ2: Compared with the existing retrieval and non-retrieval models, how

effective is the generation of HRCODE?

• RQ3: Which part has more influence on the effect of the retrieval model?

• RQ4: What is the effectiveness of parameters on the model?

• RQ5: Does the result different from the ground truth must be the wrong

code?

4.1. Data Set

The DJANGO dataset is a collection of lines of code from the Django Web frame-

work in the real world. DJANGO contains a wide range of real-world use cases, such

as string operations, IO operations, and exception handling. The natural language

description examples of this dataset are diverse, and each line of code is manually

annotated with natural language description. The Table 1 shows that the data con-

tains 18805 examples of data in total, 16000 examples are used for training, 1000

examples are used for verification, and the rest are used for testing. The upper half

of Table 2 is the grammatical data statistics with w/o unary closure, and the other

part refers to statistics of w/ unary closure.

Table 1. Dataset statistics for DJANGO

Dataset DJANGO

Train 16000

Development 1000

Test 1805

Avg. tokens in NL 14.3

Avg. characters in code 41.1

Avg. size of AST 17.2

Table 2. Statistics for associated grammars

Statistics of Grammar DJANGO

# productions 222

# node types 96

terminal vocabulary size 6733

# productions 237

# node types 92

Avg. # actions per example 16.4

4.2. Baseline Models

We compare our approach with six deep learning based code generation models from

previous work. The six baselines can be divided into two types: retrieval model and

non-retrieval model.

YN17(2017): This work is a data-driven syntax-based neural network model. It

can capture the strong underlying syntax structure of specific programming lan-

guage, thereby transforming natural language into an abstract syntax tree. Finally,
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the model converts the AST into target code. Yin et al. were the first to use Django

data in code generation tasks.

STRUCTVAE(2018): This work is a variational auto-encoding model for semi-

supervised code generation. It can learn from limited amount of parallel data and

readily available unlabeled natural language utterances. The STRUCTVAE model

provides a method for training VAE with structured latent variables, and con-

tributes to the entire generative model research.

RECODE(2018): RECODE model is a method based on n-gram action subtree

retrieval. it can explicitly reference most relevant code examples in the existing data

to enhance the model generate code. The RECODE model increases the probability

that the retrieved n-gram action subtree will predict the action in the code.

TRANX(2018): Inspired by YN17 model, Yin et al. further proposed the

TRANX model. This work is a transformation-based neural semantic parser that

can map natural language utterances into formal meaning representations. Com-

pared with the previous work, the TRANX model has higher accuracy and greater

scalability.

COARSE2FINE(2018): In this work, Li Dong et al. proposed a structure-aware

neural architecture Coarse2Fine model. The model transforms the input natural

sentences into rough sketches, ignoring fine-grained information temporarily. Then,

the model fills in the missing details by considering natural language input and the

sketch itself. The Coarse2Fine model can achieve great performance in the structural

models.

TRANX-R2L(2021): The model mentions that traversal generation is not suit-

able for processing all multi-branch nodes. So they proposed new method to equip

the Seq2Tree model with a context-based branch selector, which can dynamically

determine the multi-branch nodes. In particular, the TRANX-R2L model solves the

problem that the choice of expansion order is not differentiable through reinforce-

ment learning to optimize the selector.

4.3. Evaluation Mertics

We evaluate the quality of code generation using two automatic metrics: exact-

match accuracy and BLEU-4.

For exact-match accuracy, we use the evaluation method of the previous

work[9][15]. We convert the predicted code and ground truth into AST for com-

parison. When the two data exactly match, we think the the prediction correct,

and vice versa. It is calculated as:

Acc =
1

n

n∑
i=1

acci (8)

For BLEU-4 metric, we follow[9][11], and use token-level BLEU-4[39] with as a

secondary metric, defined as the averaged BLEU scores over all test data. It is
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calculated as

BP =

{
1 if c > r

exp(1− r
c ) if c ≤ r

(9)

BLEU = BP ∗ exp(
4∑

n=1

wnlogpn) (10)

where pn is the co-occurrence rate of length n subsequences between candidate and

reference, c is the length of the candidate, r is the effective reference sentence length,

and BP refers to brevity penalty.

4.4. Parameter Setting

We use the official codebase of PLBART (Ahmad et al., 2021). The model learning

rate is 5 × 10−5, the max epoch is 10 and the patience set 3. We tune the batch

size in [4, 8, 16]. The range of hyperparameters α and β is [0,1], and the sum of α

and β is equal to 1, which we will discuss in the experimental results.

5. Experimental Results and Discussion

5.1. Overall Performance

For RQ1, Table 3 illustrates the overall performance of our combined model com-

pared to baselines. We can see from the table that our model is obviously outper-

forms all baselines on accuracy and BLEU-4. Comparing to the non-Retrieval based

baselines, that is, YN17, STRUCTVAE, TRANX, COARSE2FINE and TRANX-

R2L, our model can achieve at least 4.7% performance accuracy improvement. It

indicates that retrieval model can effectively improve the accuracy of code gener-

ation. Besides, we also compared with the retrieval model RECODE, HRCODE

model can improve 10.3% on accuracy metric. This shows that the retrieval model

that combines semantic and structural features is more effective. We will compare

the results generated by the HRCODE model and these two types of models in next

section.

For the second metric BLEU-4, our model also achieved outstanding results.

However, in code generation tasks, the accuracy indicator can clearly show the

difference in the generated code between models. Therefore, we did not reproduce

the results of those models that did not give BLEU-4 values in their work.

5.2. Generation Analysis

For RQ2, we select three test samples to analyze the generated results. These case

studies are from RECODE work, and the three examples are the 1700th, 876th, and

101st in the test data. We chose the retrieval model (RECODE) and non-retrieval
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Table 3. Overall Performance

Model ACC BLEU-4

YN17 71.6 84.5

STRUCTVAE 73.7 -

RECODE 72.8 84.7

TRANX 73.7 85.9

COARSE2FINE 77.4 -

TRANX-R2L 78.4 -

HRCODE 83.10 91.3

model (YN17, TRANX) to compare the results generated by the HRCODE model.

It can be seen from Table 4 that the code generation result of the YN17 model

is the worst, and the generation results of the three samples have deviations from

the ground truth. For the TRANX and RECODE models, the code of the first

example was successfully generated, but the other two have obvious errors. Overall,

the HRCODE model has the best output, and the model successfully generated

the first two examples. For the third example, comparing with other models, we

successfully predicted the built-in function str(). As for the generation error of the

function name SafeString, we think that is a problem with the input data. Since the

input of Example 3 is ”return an instance of SafeText”, it is obviously impossible

to generate the value of SafeString, and the SafeText function name is successfully

predicted for all four models. Therefore, the HRCODE model can be generated

correctly for the above three examples, which is obviously better than the existing

retrieval and non-retrieval models.

In order to facilitate the observation of the effect of HRCODE generation, we

provide the results of all test data generationb.

5.3. Ablation Study

For RQ3, we discuss the influence of NL and Action on the results of the retrieval

model. We conduct an ablation study to check the effectiveness of our proposed

method.

Full-model is retrieval model that takes into account the feature of NL and

action. The model weights α and β, we choose α = 0.8, β = 0.2, the discussion of

the parameters will be introduced in the next section.

NL-model refers to retrieval process that only considers NL, and the model

does not contain structural features.

bwww
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Table 4. Django examples on correct code and predicted

Example 1 (1700) Model

“if offset is lesser than integer 0,

sign is set to ’-’, otherwise sign is ’+’ .”
Input

sign = offset < 0 or ’-’ YN17

sign = ’-’ if offset < 0 else ’+’ TRANX

sign = ’-’ if offset < 0 else ’+’ RECODE

sign = ’-’ if offset < 0 else ’+’ HRCODE

sign = ’-’ if offset < 0 else ’+’ Gold

Example 2 (876) Model

“evaluate the function timesince with d, now and reversed set

to boolean true as arguments, return the result.”
Input

return reversed( d, reversed=now ) YN17

return timesince(d, now, reversed= reversed) TRANX

return timesince(d, now, reversed=now) RECODE

return timesince(d, now, reversed=True) HRCODE

return timesince(d, now, reversed=True) Gold

Example 3 (101) Model

“return an instance of SafeText ,

created with an argument s converted into a string .”
Input

return SafeText(bool(s)) YN17

return SafeText(s) TRANX

return SafeText(s) RECODE

return SafeText(str(s)) HRCODE

return SafeString(str(s)) Gold

Act-model refers to retrieval process that only considers actions, and the model

does not contain semantic features.

It can be seen from Figure 3 and 4 that the experimental result of full-model

achieve the best score at epoch 3, while the Act-model that only uses action infor-

mation has the worst result. We think there are two reasons: 1. Semantic features

are more effective than structural features. The retrieval data takes the form of

sequence as input, and the words in the semantic information are more recogniz-

able in the embedded vector space. Therefore, NL-model can retrieve more effective
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samples from the training data. 2. Action structure information is limited by the

TRANX model. Since actions are generated by TRANX, for the wrong samples

generated by TRANX, inaccurate action information will cause the wrong samples

to be retrieved. Therefore, the accuracy of Act-model is limited by the TRANX

model.

Fig. 3. Acc score for three models

Finally, we can know that the retrieval model with mixed semantics and struc-

tural features can effectively improve the accuracy of code generation.

5.4. Parameter Influence

For RQ4, we discuss the effects of hyperparameters α and β on the model, then we

discuss the results of experiments with different batch-sizes.

HRCODE model combines structural and semantic features for retrieval, and we

use weights α and β to control the proportion of feature fusion. As shown in Table

5, when the weights of action and NL are 0.8 and 0.2, the accuracy and BLEU-4 of

the model both reach the maximum.

Then, we discuss the generation accuracy of retrieval models for different batch-

sizes, as shown in Figure 5 and 6. Under the condition of hyperparameter α=0.8

and β=0.2, our model chooses three different batch-sizes of 4, 8 and 16. It can be

seen from the figure that the overall effect of the model is better when batch-size is

8 at epoch 3.
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Fig. 4. BLEU-4 score for three models

Table 5. The effects of hyperparameters α and β on the model

a b E-1 E-2 E-3 E-4 E-5 E-6 E-7 E-8 E-9 E-10

0 1.0 76.51 78.61 81.27 80.50 80.28 80.06 79.17 77.67 76.01 76.34

0.1 0.9 75.51 79.83 82.05 80.89 81.05 80.50 80.22 79.22 78.23 77.12

0.2 0.8 77.67 81.00 81.27 82.66 81.61 81.22 79.72 78.89 77.34 75.78

0.3 0.7 77.29 80.61 81.33 82.11 80.00 80.22 79.78 79.50 79.22 77.79

0.4 0.6 77.67 81.50 82.88 82.60 80.11 80.22 79.78 78.84 76.79 76.57

0.5 0.5 77.67 81.50 81.00 81.61 80.31 81.61 81.33 79.61 78.06 78.12

0.6 0.4 77.17 81.11 81.50 82.71 81.16 81.05 80.00 78.73 77.51 78.12

0.7 0.3 77.73 82.22 82.10 81.88 81.50 81.39 80.72 80.11 78.95 76.95

0.8 0.2 75.96 80.83 83.10 82.44 81.33 80.66 79.11 78.50 78.50 78.78

0.9 0.1 77.62 81.11 82.44 81.50 81.55 81.83 81.05 79.94 78.56 77.62

1.0 0 76.57 80.61 81.78 80.33 81.00 81.61 80.44 79.00 77.90 77.62

5.5. Error Analysis

For RQ5, we discuss whether the generated code is different from the ground truth

should be consider as an error. The second discussion is about the types of codes
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Fig. 5. Acc score for different batch size models

Fig. 6. BELU-4 score for different batch size models

that these error codes can be divided into.

Since we used exact-match accuracy as metric, if generation code has a little
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difference with ground truth in semantic information during the evaluation process,

it will be recognized as an error code. But the function of generating code and

reference code is the same, such as Example 4 and Example 5. Therefore, the exact-

match accuracy metric does not fully reflect the results of the model. In order to

better analyze the information of the error codes generated by HRCODE model,

we have classified them, as shown in the Table 6.

Table 6. Error Types

Type
Same

Function

Minor

Error

Structure

correct

Complete

Irrelevant
Totally

Number 12 124 111 58 305

Same Function means that the generated code is different from the semantic

information of the target code, but the result of the code output is the same.

Minor Error represents that there are no more than two semantic information

errors between the generated code and the target code, such as the value error of

the list in Example 6.

Structure correct means that there are many semantic errors between the

generated code and the target code, but the code structure consistency with ground

truth.

Complete Irrelevant indicates that the generated code has a big difference

with target code. Such as Example 10.

It can be seen from Table 6 that the total number of model code generation errors

is 305, and the number of completely wrong samples is 58. In other words, the code

that can generate the correct architecture or even the same function accounts for

80.98%.

In Table 7, for examples 6, 7 and 9, we can see that the model is more sensitive

to the words in the NL description and can effectively use Local words. However,

code generation is a context-sensitive task, so the HRCODE model cannot generate

the ”o” in example 6 and the ”KeyError” in example 9, which appeared before.

6. Threats to Validity

We discuss the threats to the construct, internal, and external validity of our study

in this section.

Construct validity. The experiment uses the django data set, which is col-

lected by Kamei et al. from the software library. However, the total sample data

is less, and the NL description in the data set may also be problematic. There-

fore, the quality of the data set generated by the code has always been a challenge

in the field of software defect prediction. Another threat to model performance is
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Table 7. Error Examples

Same

Function

Example 4 (7)

pos and last are integer 0. Input

pos , last = 0 HRCODE

pos = last = 0 Gold

Example 5 (18)

”for every i in range of integers from 0

to length of result, not included,”
Input

for i in range ( 0 , len ( result ) ) : HRCODE

for i in range ( len ( result ) ) : Gold

Minor

Error

Example 6 (565)

”append value under the 0 key of the opt dict

dictionary to code list.”
Input

code list . append ( opt dict [ 0 ] ) HRCODE

code list . append ( opt dict [ o ] ) Gold

Example 7 (875)

”define the function timeuntil with 2 arguments,

d and now defaulting to none.”
Input

def timeuntil ( d , now = none ) : HRCODE

def timeuntil ( d , now = None ) : Gold

Structure

Correct

Example 8 (299)

”return next element of the iterable it.” Input

return next ( self ) HRCODE

return it . next ( ) Gold

Example 9 (300)

”substitute klass. dict for next.” Input

next = klass . dict HRCODE

next = advance iterator Gold

Complete

Error

Example 10 (137)

”instantiate class X, get its length.” Input

super ( X , self ) . length HRCODE

len ( X ( ) ) Gold

Example 11 (372)

”append i args to args, append new args with the result.” Input

args . append ( new args ) HRCODE

new args . append ( args [ : ] + i args ) Gold
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whether the evaluation indicators used in the experiment are suitable for real soft-

ware development scenarios. We use exact-match accuracy and BLEU-4 to evaluate

the performance of predictive models, which have been widely used in previous

code generation studies[9]. However, the matching accuracy may ignore the same

function code, and it does not fully reflect the performance of the model.

Internal validity. The threat to internal validity is mainly the possible errors in

the experimental code. In order to avoid errors in the code, we carefully refer to the

code of Ahmad et al.[36] and Yin et al.[15]. In addition, we have adopted mature

third-party libraries to improve the reliability of the code. Finally, we carefully

checked all the experimental codes.

External validity. The threat to external validity is mainly regarded as a gen-

eralization of experimental results. The experiment only uses a data set generated

by the code of an open source project, and the proposed method has high predic-

tive performance on this data set. However, whether our method can be applied to

other projects remains to be further studied. Therefore, more data sets are needed

to validate the model.

7. Conclusion and Future Work

In this paper, we propose a code generation architecture HRCODE that integrates

structural and semantic feature retrieval. The model converts NL descriptions into

intermediate framework actions to obtain structural features. Then, we find the most

relevant samples through a retrieval method that combines semantic and structural

features to construct a new model input. The experimental results show that the

retrieval model of multiple feature fusion is more effective. And the HRCODE model

is at least 5 points higher in Acc than the current best method.

Future work will be divided into the following four parts:

(1) Consider more data sets. Since the data set with the same baselines is only

Django and the experimental workload of this work is large, we only consider one

data set. In future work, we will consider new data sets, such as wikisql.

(2) Choose more effective indicators. In section 6, the code generated by the

model has the same function as the ground truth, so the matching accuracy does

not reflect the overall effect of the model. Therefore, we consider that the execution

accuracy will be used in future work to verify the effect of the model.

(3) Obtain more effective structural features. Since we use the tranx model to

generate actions in the structural part, the structural features are limited to the

previous model. So we will consider new methods of structural feature extraction

in the next work.

(4) Experiments with different sample retrieval numbers. In this paper, we only

select the most relevant samples without considering more search samples. This is

because in the djang data set, each NL description corresponds to each line of code,

so it is sufficient to retrieve the code information. In future work, we will consider

the impact of more data sets on the structure of the experiment in multiple retrieval
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samples.
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