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Bug reports are submitted by the software stakeholders to foster the location and elim-

ination of bugs. However, in large-scale software systems, it may be impossible to track
and solve every bug, and thus developers should pay more attention to High-Impact
Bugs (HIB). Previous studies analyzed textual descriptions to automatically identify

HIBs, but they ignored the quality of code, which may also indicate the cause of HIBs.

To address this issue, we integrate the features reflecting the quality of production (i.e.,
CK metrics) and test code (i.e., test smells) into our textual similarity based model to

identify HIBs. Our model outperform the compared baseline by up to 39% in terms
of AUC-ROC and 64% in terms of F-Measure. Then, we explain the behaviour of our
model by using SHAP to calculate the importance of each feature, and we apply case

studies to empirically demonstrate the relationship between the most important features

and HIB. The results show that several test smells (e.g., Assertion Roulette, Conditional
Test Logic, Duplicate Assert, Sleepy Test) and product metrics (e.g., NOC, LCC, PF,
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and ProF) have important contributions to HIB identification.

Keywords: high impact bug report; test code smell; product metric; empirical software

engineering.

1. Introduction

To report and track the process of bug elimination, software bug reports could be

submitted and updated by developers, testers, and users in online Issue Tracking

Systems. The severity and impact of bug reports are manually assigned by software

bug triagers [1]. In software systems with growing complexity, since the emergence

of new bugs are inevitable, the triage and analysis of them could become very

challenging, and it is almost impossible to allocate software quality assurance (SQA)

resources to identify and resolve all of them [2–4]. Therefore, developers should pay

more attention to high impact bug (HIB) reports to prevent HIBs from affecting

core functionality of software projects. Thus, the ability to automatically identify

HIBs from all available bug reports has become one of the most expected features

of software tracking system from practitioners [5].

Researchers have been focusing on identifying HIBs. For example, Ohira et al. [6]

manually identified HIBs after reviewing 4002 bug reports in 4 open-source projects,

and they defined 6 types of HIBs namely Surprise, Dormant, Blocker, Security, Per-

formance, and Breakage bugs. Based on the previous HIB dataset, many predictors

have been proposed to automatically detect HIBs using the text information in the

report. However, since the root cause of software bugs are erroneous and sub-optimal

implementations in code, prior studies did not take code-related information into

consideration, and they derived unpromising prediction performance [7–11].

Software code quality could be measured by product metrics such as the CK

(Chidamber and Keremer) metrics [12]. CK metrics evaluate the extent of coupling,

cohesion, and complexity of object oriented design, and they were proved effective

as the backbone for object-oriented design metric [13]. Various studies indicated

the effectiveness of CK metrics in empirical studies of software engineering [14,15],

and they were frequently used in software defect prediction studies [16]. Apart from

the CK metrics, the quality of software testing may also impact software reliability.

Testing is a crucial SQA activity which aims at revealing potential bugs. Recent

study [17] revealed test smell (i.e., sub-optimal test code implementation) could help

software defect prediction by providing additional predictive power on post-release

defects.

To foster HIB prediction using code quality information, we build machine learn-

ers based on test smells related to tests of production code as well as product met-

rics with imbalanced learning sampling strategies including Random Over-Sampling

(ROS), Random Under-Sampling (RUS), and Synthetic Minority Over-sampling

TEchnique (SMOTE). [18–20].

The main contribution of our work are listed as follows.

1. We propose a machine learning based HIB prediction model approach using
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product metrics, test smell features, and textual similarity. The performance is

better than the model proposed by prior studies in all indicators, and it is also

the first model to use product metrics and test smells as features to predict HIB.

2. We use SHAP (SHapley Additive exPlanations) [21] to explain the reason why

our model derives better results in prediction by revealing feature importance

and exploiting case studies.

3. We discuss empirically the relationship between test smells, product metrics, and

prediction outcomes to reveal the relationship between code quality and HIBs.

The extension and improvement with respect to the preliminary conference pa-

per [22] includes:

1. We extend the features by adding 49 product metrics. The model proposed in

this paper outperforms the model of the preliminary conference paper [22] by up

to 2% in terms of AUC and 4% in terms of F-Measure.

2. We extend the discussion of features’ predictive power and model behavior in

terms of the impact of product metrics to HIB prediction.

3. We correct some issues in our dataset and experiments, e.g., some data in the

conference version are redundant since they do not contain Java code.

This paper is organized as follows. In Section 2 we summarize related literature.

Section 3 presents how we construct our dataset, while Section 4 outlines the settings

and research questions, as well as the concerned evaluation metrics. In Section 5

we discuss the results of our experiment, while Section 6 overviews the threats to

validity and our effort to cope with them. Finally, Section 7 concludes the paper

and describes future research.

2. Related Work

This section introduces research related to three major aspects of this paper, i.e.,

HIBs, test smells, and product metrics.

2.1. High-Impact Bugs

Various activities in the bug management process and end-users may be impacted

by HIBs. In this subsection, we introduce 6 types of HIBs outlined in [6] .

Surprise bugs. A surprise bug [10] can disturb the workflow and/or task

scheduling of developers, since it appears at unexpected timing (e.g., bugs detected

in post-release) and locations (e.g., bugs found in files that are rarely changed in

pre-release). Shihab et al. showed that surprise bugs exist in only 2% of all files [9].

However, surprise bugs may disturb developers’ task scheduling greatly.

Dormant bugs. A dormant bug [23] is defined as a bug that was introduced

in one version (e.g., Version 1.1) of a system, yet it is not reported until after the

next immediate version (i.e., a bug is reported against Version 1.2 or later) [23].
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Research [23] found that 33% of the reported bugs in Apache Software Foundation

(ASF) projects were dormant bugs.

Blocking bugs. A blocking bug is a bug that blocks other bugs from being

fixed [24]. It often happens if a dependency relationship exists among software

components. Since a blocking bug inhibit developers from fixing other dependent

bugs, it has a high impact on developers’ task scheduling. Due to this reason,

blocking bugs have to be fixed early to not prevent other bugs from getting fixed.

Security bugs. A security bug [9] can raise a serious problem which often

impacts on uses of software products directly. It exploits to gain unauthorized access

or privileges in the systems. In general, security bugs are supposed to be fixed as soon

as possible.Since Internet devices (e.g., smartphones) and their users are increasing

every year, security issues of software products should be of interest to many people.

In general, security bugs are supposed to be fixed as soon as possible.

Performance bugs. A performance bug [25] is defined as programming defects

that cause significant performance degradation. The performance degradation con-

tains poor user experience, lazy application responsiveness, lower system through-

put, and needles waste of computational resources.

Breakage bugs. A breakage bug [10] is a functional bug which is introduced

into a product because the source code is modified to add new features or to fix

existing bugs. A breakage bug can cause usable functions in old versions unusable

after releasing new versions.

In this paper, we mainly identify two high-impact bugs, i.e., surprise and break-

age bugs. Surprise Bugs may appear at unexpected timing (e.g., bugs detected in

post-release) and locations (e.g., bugs found in files that are rarely changed in pre-

release), which may cause high impact on software. Breakage bugs are the bugs

which can have impact on functionality of whole software system, leading to the

error of system usability [8].

2.2. HIB Identification

Developers rely on bug reports to locate and fix bugs. However, researches revealed

that bug reports could be very ambiguous or even incorrect in meaning, which is very

unfavorable for developers to focus on the most important bug through manually

inspecting bug reports. Therefore, researchers focused on helping developers by

automaticly identify HIBs.

Thung et al. [26] and Valdivia-Garcia et al. [24] first categorized bug reports into

bug types and identified bugs respectively, and subsequent studies [7–9] found that

there exists obvious data imbalance in HIB report datasets. The authors proposed

an approach to use machine learning classification methods to identify HIBs based

on the textual information from the description and summary features in the bug

report, which improves the performance of prediction. Yang et al. [8] converted the

text information in the bug report into word frequency vectors after basic processing

(i.e., removing the stop words, numbers and punctuation marks, using Iterated
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Lovins Stemmer to transform them to their root forms). The machine learning

model was built based on the word frequency vector. Furthermore, they also tried

to address the data imbalance problem in HIB datasets by exploiting data sampling.

Compared with previous studies, the major improvements and contributions of

our work are:

1. Since HIB datasets are highly imbalanced, the up-mentioned research were not

reporting reliable prediction performance evaluation metrics which are insen-

sitive to imbalanced data (e.g., AUC). Meanwhile, their performances are not

promising (e.g., F-Measure < 0.7 [27] in most predicted projects).

2. Prior studies ignored the production and test code quality of the software project,

which could be the root cause of defects.

3. We explain our model from a different and more detailed aspect comparing to

prior studies, i.e., we focus on the impact of test-related features to software bug

report prediction by applying an explainable AI (XAI) technique called SHAP.

2.3. Test Smell Detection and Impact Analysis

Test smells will be more likely to present in poorly designed tests. Van Deursen et al.

[28] first proposed the definition of various test smells including Assertion Roulette

and General Fixture, which reflected many aspects of sub-optimal implementation

of test code. Later, Peruma et al. [29] extended prior studies and also proposed

several new test smell including Conditional Test Logic, indicting other multiple

aspects including quality, reliability, and maintainability. In this paper, we focus

on the most frequently occurred test smells which could be detected by a reliable

evaluation tool, i.e., TsDetect [29].

Although test smell detection is actively studied, little is known about the impact

of test smells to test code and software reliability. Kim et al. [17] proposed that test

smell metrics can provide additional explanatory power on post-release defects.

Therefore, we believe that we could use test smells to capture code quality related

information and improve the performance of HIBs prediction.

2.4. CK Product Metrics

The original metric set proposed by Chidamber and Kemerer [12] contains 6 OOP

(Object-oriented Programming) design metrics, which measures the inheritance,

coupling, and cohesion of code. Such metrics were proved related to software de-

fects [30]. We use an active open-source implementation of CK metrics designed by

Aniche [31], which has been proved reliable in related work [32,33]. The implemen-

tation also extended the original metrics by involving more method-level metrics

since they could provide design information at a smaller granularity.

fan
高亮
smells

fan
高亮
on



January 15, 2022 5:35 WSPC/INSTRUCTION FILE output

6 Jianshu Ding

Table 1: Statistics of the HIB report dataset

Project Total Java Surprise Breakage

Camel 579 507 200 41

Derby 731 634 94 165

Wicket 663 581 213 50

3. Dataset Generation

This section describes how we generate our dataset using TsDetect, CK metrics,

and textual similarity of bug reports.

3.1. HIB Dataset Pre-Processing

The original HIB dataset was obtained by Ohira et al. [6] by manually inspecting 4

open-source projects and selecting issue reports containing two categories of BUGS

and IMPROVEMENTS.

Since we mainly focus on bugs, we first excluded IMPROVEMENT reports.

The TsDetect tool currently only supports test smell detection for Java projects.

Therefore, we discarded one project (i.e., Ambrari) with little Java code, and we

consider 3 projects, namely Camel, Derby, and Wicket. Table. 1 shows the statistics

of numbers of HIB reports of the processed dataset.

3.2. Extracting Textual Similarity Matrix

The textual pattern of a bug report could be used to identify other similar reports.

We map the title and description of various bug reports into textual similarity

matrix. Then, we combine the similarities of the most similar bug reports (i.e.,

using them as weight) with code quality features (i.e., test smell and CK metric)

to summarize the overall quality of code related to similar bug reports. Therefore,

we can generate features for HIB identification.

In terms of the processing of texts, we pre-processed the descriptions of bug

reports using a process similar to Yang et al.’s work [8] , i.e., removing stop words,

numbers, punctuation and stemming words to their root forms (e.g., “reading” and

“reads” are reduced to “read”). Then, we calculate the word frequency vector for

each stemmed term and retrieve the term frequency vector. Meanwhile, we remove

words that only appear once, because they do not have much information and may

even introduce noise. Based on the word frequency vector that has been processed,

we can calculate the degree of similarity of each item, and build a similarity matrix

based on the result. Finally, we assign textual similarity as weights of test smells

and product metric features to each test class.

In terms of bug report similarity calculation, we should specify the most similar

K bug reports for generating the similarity matrix. The K parameter will be tuned

in the subsequent experiment section.

fan
高亮
斜体



January 15, 2022 5:35 WSPC/INSTRUCTION FILE output

Automatic Identification of High Impact Bug Report by Product and Test Code Quality 7

Table 2: Description of Test Smells

Test smell Abbr. Description

Assertion Roulette AR
A test method that contains more than one assertion statement without

an explanation/message (parameter in the assertion method).

Conditional Test Logic CTL
A test method that contains one or more control statements (i.e, if,

switch, conditional expression, for, foreach, and while statement).

Constructor Initialization CI

A test class that contains a constructor declaration. This may introduce

side effects when the test class inherits another class, i.e., the parent

class’s constructor will still be invoked.

Default Test DT A test class named either ‘ExampleUnitTest’ or ‘ExampleInstrumentedTest’.

Duplicate Assert DA
A test method that contains more than one assertion statement with the same

parameters.

Eager Test EGT
A test method that contains multiple calls to multiple production methods which

is difficult in maintenance.

Empty Test ET A test method that does not contain a single executable statement.

Exception Catching Throwing ECT A test method that contains either a throw statement or a catch clause.

General Fixture GF
Not all fields instantiated within the setUp method of a test class are used by

all test methods in the test class.

Ignored Test IT A test method or class that contains the @Ignore annotation.

Lazy Test LT Multiple test methods calling the same production method.

Magic Number Test MNT
A test method that contains unexplained and undocumented numeric literals as

parameters or identifiers, which increases difficulty in maintenance.

Mystery Guest MG A test method containing object instances of files and databases classes.

Redundant Print RP
A test method that invokes either the print or println or printf or write method

of the System class.

Redundant Assertion RA
A test method that contains an assertion statement in which the expected and actual

parameters are the same.

Resource Optimism RO

A test method utilizes an instance of a File class without calling its exists(),

isFile() or

notExists() methods.

Sensitive Equality SE A test method that invokes the toString() method of an object.

Sleepy Test ST A test method that invokes the Thread.sleep() method.

Unknown Test UT
A test method that does not contain a single assertion statement and @Test(expected)

annotation parameter.

Verbose Test VT A test method that is too complicated or cumbersome

Print Statement PS
Print statements in unit tests are redundant as unit tests are executed as part of

an automated script and do not affect the failing or passing of test cases.

3.3. Detecting Test Smell

We exploit the state-of-the-art TsDetect [29] tool for detecting 21 test smells in

Table. 2. Since this tool is only available for Java projects, we discard non-Java

codes. Then, we evaluate test smells of test code in the three open-source projects.

In case of the absence of test code related to the production code, we set the value

of such features to 0, such circumstance accounts for 7.6% of all data.

3.4. Evaluating CK Metrics

We use the implementation of the Aniche CK [12] which is used in various studies.

The advantage of this implementation is that it uses static analysis (i.e., no need for

code compilation), and it calculates both class-level and method-level code metrics.

An obvious improvement brought by CK metrics is that data for code components

without test code could be populated by CK metrics, which could improve the per-

formance of the predictor. Since there are 49 CK metrics, we list their abbreviations

and short descriptions in Table. 3. The full description of CK metris is available in
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Table 3: Description of CK metrics

CK Metric Abbr.

Coupling between objects/Modified CBO/CBO Modified

FAN-IN/FAN-OUT FAN-IN/FAN-OUT

Depth Inheritance Tree DIT

Number of Children NOC

Number of Fields TM/SM/PM/PriM/ProM/DM/VM/AM/FM/SynM

Number of Methods TF/SF/PF/PriF/ProF/DF/VF/AF/FF/SynF

Number of Visible Methods TvM/SvM/PvM/PrivM/ProvM/DvM/VvM/AvM/FvM/SynvM

Number of Static Invocations NOSI

Response/Weight Method for a Class RFC/WMC

Lines of Code LOC

Lack of Cohesion of Methods LCOM/LCOM*

Tight/Loose Class Cohesion TCC/LCC

Quantity of Returns/Loops/Comparisons RQT/LQT/CQT

Quantity of Try-catches/Parenthesized Expressions TQT/PQT

String Literals SL

Quantity of Number/Math Operations/Variables NQT/MQT/VQT

Max Nested Blocks MNB

Quantity of Anonymous classes, Inner Classes, and Lambda Expressions AQT

Number of Unique Words/Log Statements UQT/LSQT

Has Javadoc HJ

Modifiers MOD

Usage of Each Variable/Field UEV/UEF

Method Invocations MI

our online appendix a.

4. Empirical Study Setup

The goal of our study is to improve the performance of HIB identification, with

the purpose of evaluating to what extent the code quality can help predict HIB. To

a1

Fig. 1: Overview of methodology and experiment process.
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these ends, we propose the following research questions. Moreover, our experimental

setup process is shown in the Fig. 1.

• RQ1. How does our proposed model perform compared with the baseline models?

Based on the dataset we processed in Section 3, we conduct feature selection to

remove the features that correlate with each other. Then, we build prediction model

using machine learning classifier with different selections of parameters [34]. To

determine the significance of performance improvement of our model, we compare

it with a state-of-the-art [8] and the model proposed in our preliminary conference

version [22].

• RQ2. What is the predictive power of the test smell features to the occurrence

of high-impact bugs?

RQ2 aims at explaining the contribution of each feature to the predictor’s pre-

diction performance. We calculate the SHAP feature importance of each feature to

illustrate their predictive power for identifying the likelihood of the HIB presence

to figure out the contribution of each feature in our prediction model.

• RQ3. What is the relationship between the value distribution of the proposed

features and the prediction results?

In addition to the contribution of model performance and features, we intend

to explain the results of the model by revealing its behavior. We also include case

studies to empirically demonstrate the impact of the important features to the

presence of HIBs. Threfore, we may provide suggestions to developers based on our

findings to help them prevent HIB from occurring.

4.1. RQ1: Defining and Evaluating the Proposed Model

Feature Selection. High correlation among features could negatively impact

model performance and hinder the interpretability of models [35]. Thus, we ap-

ply a new feature selection method called Autospearman [36] which can reduce the

multicollinearity and correlation while preserving most features.

Data Balancing. As reported by previous studies, the dataset in the HIB

report is highly imbalanced. [8]. Breakage and Surprise bugs only account for 15%

and 29% of all the bugs, which may affect the performance of the model. Therefore,

we adopt ROS, RUS, and SMOTE to deal with data imbalance to improve prediction

performance [37,38].

Validation Scenarios. We build models separately in within-project, time-

based, and cross-project scenarios. In order to ensure that our experimental results

are credible and verifiable, we set within-project validations follow the classical 10-

Fold Cross-validation strategy so that we can have unbiased and stable performance

[39,40] data. However, it may cause a violation in time series since we may violate

the principle of time-set-based schemes, leading to the use of subsequent time data

to predict previous data. Thus, we introduce time-based validation similar to our

baseline did [8], which ordered the data chronically and used the first half of the

data as training set to predict the second half of the data as test set. At the same
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time, in order to verify the potential in terms of generalization of our model, we

also included cross-project experimental settings into the scope of investigation.

Training Classifiers and Threshold Tuning. We use the Scikit-Learn pack-

age in Python [41] to train machine learners using multiple classifiers, which have

been used in previous studies [39, 42, 43]. For clarification, we used the original

implementation of the baseline to train and evaluate their model. We use three un-

balanced strategies to record data. There are many choices for its own test smell.

Different K values represent the number of most similar reports. The value is se-

lected as {5, 10, 15, 20, 25, 30, 35}.
Performance Assessment. We use four commonly used measurement indica-

tors including precision, recall, F-Measure, and AUC-ROC [44]. We rely on these

indicators to select the best predictive model from all three scenarios.

4.2. RQ2: Explaining the Predictive Power of Features

We need to explain the predictive power of each feature in the model with the

best predictive performance in RQ1 to answer RQ2. The explanation of AI models

is essential for software engineering practitioners [45, 46]. Although complex ma-

chine learning models are almost black boxes, they could be explained by using

interpretable approximation of the original model.

We apply the SHAP algorithm which has been studied empirically in recent

software engineering paper validating the stability of feature importance methods

[27, 45]. SHAP uses the game theory based Shapley values [47] to distribute the

credit for a classifier’s output among its features [27,48,49]. For each data point in

the training set, SHAP transforms features into a space of simplified binary features

as input. Afterwards, SHAP builds the model for explanation defined as a linear

function of binary values, more specifically in Eq. 1:

g(z) = ϕ0 +

M∑
i=1

ϕizi , . (1)

where ϕi ∈ R for i = 0, 1, ...,M are Shapley values. M is the number of simplified

input features, and zi = {z1, z2, ..., zM} are binary vectors in simplified input space

where z ∈ [0, 1] M . Note that |ϕi| are feature importance scores that are guaranteed

in theory to be locally, consistently, and additively accurate for each data point

[27,48]. We use the Python implementation of SHAP [48] in our study.

In order to rank the features’ importance with effect size awareness, we also

involve the Scott-Knott Effect Size Difference (SK-ESD) test. Scott-Knott test [49]

uses hierarchical clustering methods to group the means of assessment metrics of

multiple models, which is a statistical metric for comparing and differentiating

model performance. Scott-Knott test assumes the distribution of input data to

be normally distributed. The SK-ESD test is an enhanced version of the original

Scott-Knott test that corrects the non-normal distribution of the input. Meanwhile,

it uses Cliff’s Delta as an effect size measure to merge groups which have negligible
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effect sizes. Scott-Knott and SK-ESD tests have already been applied in software

defect prediction [50]. We use the R implementation of Tantithamthavorn et al. [40].

Both SHAP and SK-ESD algorithms are executed on each prediction class in-

dependently.

4.3. RQ3: Case Study of Prediction Outcomes

In this RQ, we expect to exploit case studies to find explanations for local predic-

tion instances which can reflect the models’ behavior in real-world scenarios. We

manually search the projects marked with the occurrence of HIBs from the original

dataset and then compare the descriptions in bug reports proposed by the develop-

ers with the code information in the corresponding projects to determine whether

the features selected in our model are indeed inline with problems which exist HIBs

in real-world scenarios.

5. Result and Discussion

In this section, we answer the proposed research questions by demonstrating and

discussing the results of the experiment. We also outline our findings at the bottom

of each subsection.

5.1. RQ1: Model Definition and Performance

In terms of feature selection, we select 13 CK metrics and 16 test smells, and the

full names and descriptions are available in our online appendix b.

We apply a variety of classifiers to find the best-performed one. We use Random

Forest as the classifier and report the median of weighted average performance in

Table. 4 and Table. 5. Meanwhile, we also include the performance of the baseline

work [8] and the model of our preliminary conference paper [22]. The superior per-

formance is bolded. Fig. 2 also depict the best results among the three scenarios.

Moreover, We also show the effects of different K values on the prediction perfor-

mance of the model in Fig. 3, and we pick 30 as the best K as it derives the most

ideal performance.

Due to the differences in the specification and development among various

projects, the standards for writing test codes and production codes are significantly

different. Therefore, for cross-project predictions, the performance of the model is

worse than within-project and time-based prediction.

The proposed model significantly outperformed the baseline model [8] (using

only textual similarity) by up to 39% in terms of AUC-ROC and 64% in terms

of F-Measure. Meanwhile, it also improved the model designed in our preliminary

conference paper [22] (using textual similartiy and test smell features), the improve-

ment brought by additional product metrics is up to 2% in AUC-ROC and 4% in

b1
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Within-Project Time-Wise Cross-Project
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Fig. 2: Prediction performance. (a) breakage bugs. (b) surprise bug
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Fig. 3: Performance variations of different K selections. (a) breakage bugs. (b) sur-

prise bugs.

F-Measure. We believe that production code quality boosts the performance of the

proposed model, especially in the code that test smells rarely present.

Finding 1. Our proposed model is significantly superior to the compared base-

line study, and the newly integrated production code features are also improving

the performance based on the model built in our preliminary conference paper by

up to 2% in AUC-ROC and 4% in F-Measure.
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Table 4: Results of Breakage Prediction

AUC-ROC F-Measure

Proposed Conference Baseline Proposed Conference Baseline

Within-P. 0.91 0.89 0.52 0.91 0.89 0.36

Cross-P. 0.53 0.53 0.52 0.65 0.61 0.23

Time-B. 0.86 0.83 0.52 0.80 0.77 0.52

Recall Precsion

Proposed Conference Baseline Proposed Conference Baseline

Within-P. 0.91 0.89 0.81 0.92 0.91 0.32

Cross-P. 0.55 0.52 0.51 0.84 0.80 0.27

Time-B. 0.76 0.71 0.68 0.94 0.93 0.30

Table 5: Results of Surprise Prediction

AUC-ROC F-Measure

Proposed Conference Baseline Proposed Conference Baseline

Within-P. 0.76 0.75 0.53 0.76 0.74 0.45

Cross-P. 0.52 0.51 0.51 0.51 0.51 0.43

Time-B. 0.61 0.60 0.53 0.53 0.52 0.47

Recall Precsion

Proposed Conference Baseline Proposed Conference Baseline

Within-P. 0.75 0.75 0.62 0.76 0.75 0.30

Cross-P. 0.53 0.51 0.49 0.55 0.54 0.29

Time-B. 0.53 0.51 0.50 0.74 0.72 0.31

5.2. RQ2: Features’ Predictive Power

Fig. 4-Fig. 6 depict the mean (in dashed lines), median (in solid lines), as well as

the rank of each feature’s importance. Features given the same rank are marked in

the same color. The importance presented in this section can be used to describe

the contribution of features to the performance of our model.

All the features we apply have contribution to our model. However, the contri-

bution differs from features. In all scenarios, ST, CTL, and AR are always the top

three that contribute to the model, while DA, ProF, LCC, PF, and NOC are also

ranked in the top three contributing features except for the time-based prediction

of surprise bugs.

In particular, Sleep Test (ST) is the feature with the best predictive perfor-

mance among all the features, indicating that when the behaviour of program is

less predictable, e.g., does not know the duration of pausing, it is more likely to

cause HIBs. Consistent with our previous research, Assertion Roulette (AR) and

Conditional Test Logic (CTL) are still ranked in the top three predictive power,

indicating that more unexplained assertion statements may affect the reliability of

the software system and excessive control flow statements may cause difficulty in

implementing correct code, which leads to the appearance of HIBs.

At the same time, we also discover some new features with high predictive

contribution. The high contribution of NOC indicates that when a class itself has

subclasses, the complexity of the structure will have a certain impact on HIB.
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The appearance of Loose Class Cohesion (LCC) shows that the degree of cohesion

between classes will also have a certain impact on the model. PF and ProF reflect

that the number of the field members of a class may also affect the model. The

interpretation of high importance of Duplicate Assert (DA) is similar to AR.

These results show that our model reveals potential relationship between the

code quality and the HIBs in the software project. Further details of such relation-

ship and case studies will be presented in RQ3.

Finding 2. Certain features of test code and production code quality are related

to the prediction of HIB occurrence. At the same time, each feature contributes to

the prediction of the model, indicating that it is feasible to combine test smell and

CK metrics to predict HIB.

5.3. RQ3: Case Study

Fig. 7-Fig. 8 depict examples we found from the project that can confirm the features

of our proposed model. The content in the Description comes from the bug reports

submitted by the developers in the problem summary, and the Code is found from

the source code according to the project number, which can show the problem

referred to in the description. In order to reduce unnecessary and invalid information

in the article, the useless information in Description and Code is omitted, and the

corresponding parts are displayed in bold.

We find that ST, CTL, AR, DA, ProF, LCC, PF, and NOC may have a great

influence on HIB prediction, and ST, AR, CTL features are the top three in terms

of predictive ability.

In order to verify whether and how our model reveal the relationship between

code quality and HIB in more realistic scenarios, we exploit case studies by manually

investigating data related to HIBs in the dataset, i.e., we intend to figure out whether

the ST, AR, CTL smell is really connected with the description provided by the

developer in the bug reports. At the same time, whether product metrics such as

DA, NOC, LCC, PF, ProF are closely related to the emergence of HIB is also worth

investigating.

5.3.1. Case Study of Prediction Using Test Smell

For example in Fig. 7, the bolded statement in the figure shows the error caused

by multiple obfuscated assertions in the test code showing that repeated assertions

can lead to confusion within the project, which is in line with the definition of AR

and DA. From this case study, we can find that AR is indeed one of the causes of

HIB.

In terms of CTL and ST, we also find that there exist other cases in the dataset

that can support our findings. We do not intend to present all evidence in the

paper since it may be too redundant. However, we provide an online appendixc to

chttp:

fan
高亮
reveals
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Fig. 4: Cross-project prediction feature importance classified by SK-ESD. (a) break-

age bugs. (b) surprise bugs.
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Fig. 5: Time-based prediction feature importance classified by SK-ESD. (a) breakage

bugs. (b) surprise bugs.
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breakage bugs. (b) surprise bugs.
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Fig. 7: Example of an HIB related to Assertion Roulette.

demonstrate the bug reports related to CTL and ST. Therefore, according to both

case study , we can prove that test smells and product metrics are related to certain

types of HIBs.

5.3.2. Case Study of Prediction Using CK Metrics

The appearance of the product metrics in the top three of the contribution rankings

shows that the production code quality is also important for predicting HIB.

From example in Fig. 8, we find that NOC can lead to positive prediction of HIB

occurrence, indicating that complex code structure is more difficult to understand,

and it is easier to cause errors. At the same time, the contribution of LCC also

shows that if the purpose and responsibility of the code is confusing, it is more

likely to cause HIB.

Finding 3. Our model results show that (i) complex redundant and difficult

to understand production code and test cases are more likely to cause HIBs, (ii)

ST, AR, CTL and other test smells are related to the appearance of HIB, and (iii)

information in production code is also meaningful for predicting HIB. We recom-

mend that developers should not only pay attention to the writing of test cases,

but also pay attention to the readability and maintainability of the production code

itself, especially to avoid the relevant test smell, complexity, and cohesion issues we

mentioned above.
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Fig. 8: Example of an HIB related to high NOC and LCC.

6. Threats to Validity

This section introduces threats to validity and the way we address them.

6.1. Construct Validity

The major threat to construct validity is the reliability of our datasets. Our datasets

come from three different sources, i.e., test smell detection results, CK metric results

and bug report dataset.

In order to get the test result of test smell, we exploit a detection tool called

TsDetect. For detecting various possible problems in the test code, the authors of

the article designed this tool, and they also manually reviewed different data sets to
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verify the correctness and effectiveness of the generated tool. In addition, we strictly

follow the installation, configuration, and execution guides of the detection tool. As

for the software project code, we download the specified version of the dataset from

GitHub.

Relating to CK metric, we also use a mature testing tool, which was born to just

calculate the classLevelMetrics. CK metric is an active open-source project led by

senior reaseraker, which has been used many times by other former work [13,15,51].

Using CK metric to get defect information in production code can help improve

prediction performance. however, The correctness of the test results has not yet

been proven.

The bug report dataset we used was created by Ohira et al. through manual

review of 4 open-source projects with 4002 issue reports included. Since they are

obtained by manual review, it is inevitable that there might be subjective problems

or errors in data labeling.

6.2. Conclusion Validity

In terms of the reliability of model settings, we employ three strategies to deal with

the data imbalance of the dataset. We also report results of classical evaluation

metrics, i.e., precision, recall, F-Measure, and AUC-ROC. Furthermore, we apply

statistical tests, e.g., SK-ESD, to validate the significance of our conclusions. The

reliability of feature importance algorithm is also a threat to conclusion validity.

Since model explanation is still a new topic in software analytics [52], these solutions

may be imperfect.

6.3. External Validity

External validity includes the programming specifications of different projects, the

coding styles of different developers, and the diversity of different software projects.

We have already discussed this issue in the cross-project prediction scenario, and

we should address it by involving more projects in future work.

7. Conclusion

This paper investigated whether it is possible to use test smell features and product

metrics of textual similar bug reports to identify HIB. Experimental results showed

that our proposed model is better than the model without product metrics in the

preliminary conference paper and the compared baseline.

In addition, each proposed feature has a certain contribution to the prediction

performance of the model. Meanwhile, we also managed to discover empirical ev-

idence of such relationship in case studies. In conclusion, we recommended that

developers pay attention to the quality of production code and test code, especially

to avoid some of the test smells and design problems we mentioned that may lead

to the positive prediction of HIB occurrence.
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Future work includes: (1) manually construct a dataset of projects using other

programming languages, (2) involving developer-related metrics, and (3) evaluating

empirically the usability of our model in real-world scenarios.
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metrics: A systematic literature review, Information and Software Technology 55(8)
(2013) 1397–1418.

[17] D. Kim, T.-H. Chen and J. Yang, The secret life of test smells - an empirical study on
test smell evolution and maintenance, Empirical Software Engineering 26(5) (2021)
47–59.

[18] R. Nayak, L. Buys and J. Lovie-Kitchin, Data mining in conceptualising active ageing,
Conferences in Research and Practice in Information Technology Series 61 (2006)
39–45.

[19] A. Ghanem, S. Venkatesh and G. West, Learning in imbalanced relational data, in
Proceedings - International Conference on Pattern Recognition, 2008, pp. 167–175.

[20] N. Chawla, K. Bowyer, L. Hall and W. Kegelmeyer, Smote: Synthetic minority over-
sampling technique, Journal of Artificial Intelligence Research 16 (2002) 321–357.

[21] S. Lundberg and S.-I. Lee, A unified approach to interpreting model predictions,
Advances in Neural Information Processing Systems 78 (2017) 4766–4775.

[22] D. Jianshu, F. Guisheng, Y. Huiqun and H. Zijie, Automatic identification of high
impact bug report by test smells of textual similar bug reports, in 2021 The 21st
International Conference on Software Quality, Reliability and Security(QRS), 2021,
pp. 121–134.

[23] T.-H. Chen, M. Nagappan, E. Shihab and A. Hassan, An empirical study of dormant
bugs, in 11th Working Conference on Mining Software Repositories, MSR 2014 -
Proceedings, 2014, pp. 82–91.

[24] H. Valdivia-Garcia, E. Shihab and M. Nagappan, Characterizing and predicting
blocking bugs in open source projects, Journal of Systems and Software 143 (2018)
44–58.

[25] A. Nistor, T. Jiang and L. Tan, Discovering, reporting, and fixing performance bugs,
in IEEE International Working Conference on Mining Software Repositories, 2013,
pp. 237–246.

[26] F. Thung, D. Lo and L. Jiang, Automatic defect categorization, in Proceedings -
Working Conference on Reverse Engineering, WCRE , 2012, pp. 205–214.

[27] G. Rajbahadur, S. Wang, G. Ansaldi, Y. Kamei and A. Hassan, The impact of feature
importance methods on the interpretation of defect classifiers, in IEEE Transactions
on Software Engineering , 2021, pp. 11–25.

[28] V. Deursen and L. Moonen, Refactoring test code, in 2nd International Conference
on Extreme Programming and Flexible Processes in Software Engineering (XP), 2001,
pp. 92–95.

[29] A. Peruma, K. Almalki, C. Newman, M. Mkaouer, A. Ouni and F. Palomba, Tsdetect:
An open source test smells detection tool, in ESEC/FSE 2020 - Proceedings of the
28th ACM Joint Meeting European Software Engineering Conference and Symposium
on the Foundations of Software Engineering , 2020, pp. 1650–1654.

[30] R. Subramanyam and M. Krishnan, Empirical analysis of ck metrics for object-
oriented design complexity: implications for software defects, IEEE Transactions on
Software Engineering 29(4) (2003) 297–310.



January 15, 2022 5:35 WSPC/INSTRUCTION FILE output

Automatic Identification of High Impact Bug Report by Product and Test Code Quality 21

[31] M. Aniche, Java code metrics calculator (CK), (2015). Available in
https://github.com/mauricioaniche/ck/.

[32] M. Iammarino, F. Zampetti, L. Aversano and M. Di Penta, An empirical study on the
co-occurrence between refactoring actions and self-admitted technical debt removal,
Journal of Systems and Software 178 (2021) p. 110976.

[33] A. Mori, G. Vale, M. Viggiato, J. Oliveira, E. Figueiredo, E. Cirilo, P. Jamshidi
and C. Kastner, Evaluating domain-specific metric thresholds: An empirical study,
in 2018 IEEE/ACM International Conference on Technical Debt (TechDebt), 2018,
pp. 41–50.

[34] Y. Tian, N. Ali, D. Lo and A. Hassan, On the unreliability of bug severity data,
Empirical Software Engineering 21(6) (2016) 2298–2323.

[35] J. Jiarpakdee, C. Tantithamthavorn and A. E. Hassan, The impact of correlated
metrics on the interpretation of defect models, IEEE Transactions on Software En-
gineering 47(2) (2021) 320–331.

[36] J. Jiarpakdee, C. Tantithamthavorn and C. Treude, Autospearman: Automatically
mitigating correlated software metrics for interpreting defect models, in 2018 IEEE
International Conference on Software Maintenance and Evolution (ICSME), 2018,
pp. 92–103.

[37] C. Tantithamthavorn, A. Hassan and K. Matsumoto, The impact of class rebalancing
techniques on the performance and interpretation of defect prediction models, in
IEEE Transactions on Software Engineering , 2018, pp. 1109–1121.

[38] N. Sae-Lim, S. Hayashi and M. Saeki, Context-based code smells prioritization for
prefactoring, IEEE International Conference on Program Comprehension 16 (2016)
56–78.

[39] F. Palomba and D. Tamburri, Predicting the emergence of community smells us-
ing socio-technical metrics: A machine-learning approach, Journal of Systems and
Software 171 (2021) 574–581.

[40] C. Tantithamthavorn, S. McIntosh, A. Hassan and K. Matsumoto, An empirical com-
parison of model validation techniques for defect prediction models, IEEE Transac-
tions on Software Engineering 43(1) (2017) 1–18.

[41] F. Pedregosa and G. Varoquaux, Scikit-learn: Machine learning in python, Journal
of Machine Learning Research 12 (2011) 2825–2830.

[42] F. Pecorelli, F. Palomba, F. Khomh and A. De Lucia, Developer-driven code smell
prioritization, in Proceedings - 2020 IEEE/ACM 17th International Conference on
Mining Software Repositories( MSR 2020), 2020, pp. 220–231.

[43] F. Palomba, M. Zanoni, F. Fontana, A. De Lucia and R. Oliveto, Toward a smell-
aware bug prediction model, IEEE Transactions on Software Engineering 45(2)
(2019) 194–218.

[44] A. Bradley, The use of the area under the roc curve in the evaluation of machine
learning algorithms, Pattern Recognition 30(7) (1997) 1145–1159.

[45] G. Esteves, E. Figueiredo, A. Veloso, M. Viggiato and N. Ziviani, Understanding
machine learning software defect predictions, Automated Software Engineering 27(3-
4) (2020) 369–392.

[46] G. Santos, E. Figueiredo, A. Veloso, M. Viggiato and N. Ziviani, Predicting software
defects with explainable machine learning, in PervasiveHealth: Pervasive Computing
Technologies for Healthcare, 2020, pp. 56–74.

[47] S. L. S., A value for n-person games, Contributions to the Theory of Games 2(28)
(1953) 307–317.

[48] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, R. Katz,
J. Himmelfarb, N. Bansal and LeeS.-I., From local explanations to global understand-

fan
高亮
是否大写？



January 15, 2022 5:35 WSPC/INSTRUCTION FILE output

22 Jianshu Ding

ing with explainable ai for trees, Nature Machine Intelligence 2(1) (2020) 56–67.
[49] A. Scott and M. Knott, A cluster analysis method for grouping means in the analysis

of variance, Biometrics 30(3) (1974) 507–512.
[50] X. Yang, H. Yu, G. Fan and Y. K., Dejit: A differential evolution algorithm for

effort-aware just-intime software defect prediction, International Journal of Software
Engineering and Knowledge Engineering (IJSEKE) 31(3) (2021) 289–310.

[51] R. C. d. Cruz and M. M. Eler, Using a cluster analysis method for grouping classes
according to their inferred testability: An investigation of ck metrics, code coverage
and mutation score, in 2017 36th International Conference of the Chilean Computer
Science Society (SCCC), 2017, pp. 1–11.

[52] H. Hofmann, H. Wickham and K. Kafadar, Letter-value plots: Boxplots for large
data, Journal of Computational and Graphical Statistics 26(3) (2017) 469–477.


