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Abstract 

To facilitate Object-Oriented Programming (OOP) in data persistence, practitioners use a Java Object 
Relational-Mapping framework called Hibernate to map data bidirectionally in Java classes and data 
tables of Relational Database Management System (RDBMS). Specifically, Hibernate Query Lan-
guage (HQL) is proposed to perform customizable queries for Hibernate in an OOP style. However, 
HQL queries are hard to implement and maintain due to their flexibility and complexity. To address 
these issues, we propose a model called HQLgen that combines deep learning and template filling to 
automatically generate HQL queries from program context. It employs recurrent neural network to 
learn the contextual information of Java program, and predicts the key elements within HQL clauses 
via attention mechanism. To construct the dataset for training and evaluation, we locate and extract 
projects containing HQL queries in GitHub followed by extensive cleaning and preprocessing, and 
finally obtain 24,118 HQL queries from 3,481 projects. Experimental results show that the proposed 
approach achieves an accuracy of 34.52% on generating simple HQL queries. In addition, we release 
the collected dataset for future research interest. 
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1 Introduction 

Software developers rely on databases to manage the retrieval and storage of data (Di Giacomo 2005). 
Since Object-Oriented Programming (OOP) has become a mainstream development model in the last 
decades, RDBMS (Relational Database Management System) such as MySQL and PostgreSQL (Di 
Giacomo 2005) are commonly applied since they can present relations among data tables using func-
tionalities such as foreign keys (Cook et al. 2006). The two systems are connected by one-to-one map-
pings between each OOP data class and a corresponding RDMBS data table (Vial 2019). However, 
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there still exist gaps (also known as “impedance mismatch”) (Cook et al. 2006) between RDBMS and 
software applications because they are completely independent systems (Vial 2019), and data persis-
tence between them is vital for practitioners since inconsistency will harm software reliability (Meurice 
et al. 2016; Nazario et al. 2019). However, data persisting code could be hard to write and maintain in 
data-intensive software, and the difficulties usually appear in writing queries and mapping data be-
tween the software and database (Silva et al. 2019; Loli et al. 2020; Presler-Marshall et al. 2021). 

Object-Relational Mapping (ORM) frameworks are designed to automatically generate and main-
tain database queries and data persisting code, allowing practitioners to operate database in an OOP 
coding style, e.g., using OOP data classes instead of tables in queries. In terms of Java applications, 
the most trending ORM solution is called Hibernate (Vial 2019). Meanwhile, a SQL-like query lan-
guage called HQL (Vial 2019) is shipped with Hibernate to provide practitioners with the flexibility to 
write custom OOP-styled queries. Recent work (Presler-Marshall et al. 2021; Nagy and Cleve 2015a) 
reveal the difficulties and heavy cognitive load for developers to write SQL queries correctly. Com-
pared with writing correct SQL queries, writing HQL queries is even more difficult because they are 
embedded in data persistence code and also incorporate the knowledge of OOP design (Vial 2019). 
Therefore, it is meaningful to assist developers with tools for automatic HQL generation, which could 
foster the correctness and efficiency of development in data persistence. 

 To help the majority of database users who are not proficient in query language, researchers in 
Natural Language Processing (NLP) design text-to-SQL (Text2SQL) generators that could translate 
natural languages into SQL queries (Iyer et al. 2017; Zhong et al. 2017; Xu et al. 2017; Yu et al. 2018a, 
c; Bogin et al. 2019; Wang et al. 2020). Meanwhile, some development frameworks and libraries also 
provide HQL generation functionalities based on developer-specified input. These functionalities still 
require the developers to write queries in advance, but in other preferred forms, e.g., type-safe DSLs 
(domain specific languages) of queries. However, the automatic generation of HQL queries from code 
context is much more difficult owning to totally different input. Specifically, the key elements in an 
HQL query mostly come from its program context, which involves the following two challenges. The 
first one is excessive large search space due to the variety of OOP specifications and code context to 
cover. For example, in terms of the breadth of search space, the call context of the method containing 
the target HQL query may be looked into for potential useful information. In terms of the depth of 
search space, the data classes representing the RDBMS data tables could be configured with relations, 
i.e., a data class may contain nested properties such as “Assignment.student.notes” where each of them 
is a candidate to appear in the query. The lack of precise contextual information is another major chal-
lenge. Prior Text2SQL tasks (Zhong et al. 2017; Yu et al. 2018b) use the input of instructive and de-
tailed natural language question describing the expected behaviors of the queries. However, such input 
rarely exists in the program context of HQL queries. In fact, only 17% of the methods containing HQL 
queries are commented in our dataset, and few of their comments precisely describe the queries. Thus, 
effective ways to represent program context and extract information need to be designed. 

To address the up-mentioned issues and provide practitioners with helpful suggestions when writing 
HQL queries, we propose a novel model named HQLgen to automatically generate HQL queries from 
Java program context. HQLgen is a data-driven approach that combines deep learning with template 
filling. In detail, it employs Recurrent Neural Networks (RNN) to learn the contextual information of 
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program context, and predicts the key elements within HQL clauses via attention mechanism. To eval-
uate our approach, we use BOA (Dyer et al. 2015) to extract projects with HQL queries from the full 
mirror of GitHub by locating the createQuery method calls (Nagy et al. 2015b), and build a large 
dataset containing HQL queries with their related context. Our motivation is to explore the possibility 
of tackling this problem and develop a state-of-the-art preliminary approach, so we necessarily limit 
our scope to generate simple HQL queries. 

The main contributions of our work are: 

• We release a dataset for the task of HQL generation, which contains 24,118 HQL queries with 
related program context extracted from 3,481 real-world projects. 

• We propose HQLgen, a model for automatically generate HQL queries from Java program context. 
• Extensive experiments conducted on our dataset demonstrate the effectiveness of HQLgen, as well 

as the reasonableness of its input representations and model design. In particular, it achieves an 
accuracy of 34.52% on generating simple HQL queries. 

To the best of our knowledge, this is the first work that introduces and attempts to tackle automatic 
ORM query generation problem. 

The rest of this paper is organized as follows. In Section 2 we define our task. Section 3 summarizes 
the related work, while Section 4 presents how we construct the dataset. Section 5 elaborates the design 
of our model. We analyze the evaluation results in Section 6, and further discuss the effectiveness of 
our approach and threats to validity in Section 7. Finally, Section 8 concludes the paper and points out 
the potential future work. 

2 Task Definition 

We aim to automatically generate an HQL query given its necessary program context to assist the 
developers. In this paper, we preliminarily focus on predicting simple queries with certain constraints. 
Specifically, we consider HQL queries that conform (or can be written into) the following template: 

SELECT [$AGGR] [$PROP] 
FROM  class 
WHERE [$PROP $OP value] [AND $PROP $OP value]∗ 

where the slots $AGGR, $PROP and $OP denote aggregate function, the referred property and operator 
respectively. “∗” means zero or more conditions concatenated with AND. In other words, subqueries, 
joins, OR clauses and multiple properties within the SELECT clause are not considered. Due to lim-
ited information presented in the context, GROUP BY and ORDER BY clauses are also not predicted. 
We constrain the predictable aggregate functions to {COUNT, AVG, MIN, MAX, SUM}, and the op-
erators to {=, !=, IS NULL, IS NOT NULL, <, >, IN, NOT IN, LIKE}. Note that we treat “≤” and “≥” 
as “<” and “>” respectively since we observe that it is hard to tell them apart by reading the programs 
only. We also consider NOT LIKE the same as LIKE since they share the common purpose of vague 
matching, and their difference is not likely to be found in the program context. Though with these 
constraints, the template is able to cover most of the simple queries. 

To generate an HQL query, we consider four types of context as input: 

• Target signature. The signature of the target method that wraps the intended query. 
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• Method comment. The comment of the target method if available. 

• Call context. The signatures of the methods that invoke the target method if available. 

• Candidate properties. The definitions of the properties in the target class to be queried. 
All the above context can be obtained via static analysis, and complete implementations of the methods 
and classes are not required. The assumption here is that the target class within the FROM clause is 
known and already defined, so that the model could traverse it to search for the property to appear in 
the $PROP slot. Due to the OOP characteristics, the candidate properties involve the nested properties 
and the ones inherited from the parent classes.  

Now we give the formal definition of our task: given the target signature, method comment (if ex-
ists), call context (if exists) and candidate properties of an HQL query, the goal is to generate the query 
by filling all the slots in the template above marked with “$”. Values within the WHERE clauses are 
not predicted because we find that almost all of them are parameters while the rest are always unpre-
dictable based on the program itself. Fig.1 shows an HQL query with its corresponding program frag-
ments, where the context we consider is marked in blue and the elements we are going to predict are 
marked in red. Unfortunately, the functionality of an HQL query is seldomly explicit like that in its 
context, so this task is still challenging despite the constraints described above. We believe that solving 
the task of generating simple queries is meaningful before turning to more complicated queries. 

3 Background & Related Work 

3.1 ORM and HQL Analysis 

Most related studies of ORM focus on the performance and complexity issues caused by the highly 
flexible and automated data mapping and retrieval strategies. For example, Procaccianti et al. (2016) 

 
Fig. 1 An HQL query (in italic) with its corresponding program fragments. The context we consider is marked in blue, 
and the elements in the query to predict are marked in red. 
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discover that ORM usage may increase power consumption and execution time. However, Vial (2019) 
argues ORM need not impact performance if used properly. Therefore, optimizers of ORM perfor-
mance using different caching strategies (Chen et al. 2016a) and parameters (Singh et al. 2016) are 
actively developed. In terms of the quality assurance of ORM and HQL queries, Chen et al. (2016b) 
find these codes were frequently modified and lacked tool support. Loli et al. (2020) and Silva et al. 
(2019) summarize a set of technical debts regarding the sub-optimal implementations of ORM and 
HQL which may hinder code maintainability. As far as we know, there is no previous researches on 
the development process regarding the usage of ORM and HQL. 

Meanwhile, in real-world engineering, there exists some HQL query generation methods. Spring 
Data JPA transforms method names of declared repositories (Spring components for data retrieval) to 
HQLs based on keyword matching1, but requires method names written in specific formats. For in-
stance, a method signature of “List<User> findUsersByName(String nameToMatch)” will be trans-
formed to “select * from User u where u.name = :nameToMatch”. To reduce the error and uncertainty 
caused by HQLs written in plain text, QueryDSL generates data models designed for queries from 
ORM entity classes in advance, and facilitates the developers to write the query with IDE hints based 
on the generated classes2. For example, assuming that developers need to find all “Person” entities 
whose first name is Kent, they should write code such as “query.from(person).where(person.first-
Name.eq(“Kent”))”, where “person” is an instance of the data class generated by QueryDSL called 
“QPerson”, the field “firstName” is retrieved from the ORM entity “Person”, and the method “eq” is 
implemented by “QPerson”. Later, QueryDSL will handle the generation of ORM queries. These meth-
ods, despite that they are also generating queries, are not solving the same task as ours, and their inputs 
are more certain and lack complexity like contextual code. 

3.2 Text2SQL 

Text2SQL is a task of parsing natural language questions into SQL queries. For its great potential in 
human-computer interactions, it has attracted much research interest. Research on Text2SQL has a 
long history. Early Text2SQL interfaces focus on specific databases, and rely on domain experts to 
build heuristics (Warren and Pereira 1982; Androutsopoulos et al. 1993, 1995; Popescu et al. 2003). 
Recent approaches from database community generally involve more manual feature engineering and 
user interactions with the systems (Li and Jagadish 2014; Yaghmazadeh et al. 2017). Another line of 
studies come from the field of semantic parsing (transforming natural languages into other logical 
forms), which employ neural networks to translate texts into SQL queries (Zhong et al. 2017; Xu et al. 
2017; Yu et al. 2018a, c; Bogin et al. 2019; Wang et al. 2020). At first, the task is considered as a 
sequence generation problem (Iyer et al. 2017; Zhong et al. 2017) and sequence-to-sequence model 
(Seq2Seq) (Sutskever et al. 2014; Cho et al. 2014) from neural machine translation is applied. Zhong 
et al. (2017) publish the first large-scale Text2SQL dataset named WikiSQL, which contains hand-
annotated natural language questions and tables extracted from Wikipedia. Xu et al. (2017) propose a 
sketch-based (or template-based) approach to better leverage SQL syntax, called SQLNet. Instead of 
using Seq2Seq, they design a sequence-to-set approach to generate SQL queries. TypeSQL (Yu et al. 

 
1 https://www.javaguides.net/2018/11/spring-data-jpa-query-creation-from-method-names.html 
2 https://www.baeldung.com/querydsl-with-jpa-tutorial 
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2018a) further enhances SQLNet with type information of the entities in the query via knowledge 
graph. Concerning that WikiSQL contains only simple and single table queries, a more challenging 
dataset named Spider (Yu et al. 2018b) is developed. The queries in Spider include clauses like 
GROUP BY, JOIN and nested query, so it presents a strong challenge for current research. To address 
the Spider task, Yu et al. (Yu et al. 2018c) use a SQL specific syntax-tree based decoder for the gener-
ation of complex SQL queries. To better model the relations among the table schemas, several recent 
studies represent data tables as graph and encode them with graph neural network (Bogin et al. 2019; 
Wang et al. 2020). As described in Introduction, although HQL and SQL queries have similar syntax, 
our task is much more challenging due to complex as well as ambiguous inputs. However, many in-
sights in Text2SQL studies are still valuable, and thus we borrow some of their model designs. 

4 Dataset Preparation 

4.1 Extraction of HQL Queries and Context 

To build a dataset with high practicability, we extract software projects from the full GitHub 2019 
October mirror using BOA (Dyer et al. 2015), i.e., an online GitHub software repository minor which 
is capable of mining software code ASTs at a fine-grained level. The mining script is publicly availa-
ble3. We use the latest snapshot of the projects, and we scan if the createQuery method call presents in 
the project to locate potential HQL usage as (Nagy et al. 2015b) suggested, which derives 12,782 
projects. Afterwards, we discard the inaccessible projects turned to private or deleted by developers, 
and we clone the remaining 8,799 projects from GitHub. We filter the projects that do not contain any 
HQL queries (e.g., the createQuery could also accept other parameters such as a Java data class object, 
and it will query all available data in the corresponding data table of the data class), resulting in 5,172 
remaining projects. Since test and demo projects are not practical and may contain erroneous HQL 
queries, we also filter them out from our database by the naming patterns (e.g., names containing demo, 
foo, bar, example, test, or hibernate), and thus we have 3,481 available projects in our dataset. 

We develop a static analysis program based on JavaParser4 to locate HQL queries in the context 

 
3 http://boa.cs.iastate.edu/boa/index.php?q=boa/job/93375 
4 http://javaparser.org 

Table 1 Statistics of the collected data (standard deviations are in parentheses) 

Description Statistic 
Number of projects 3,481 
Number of HQL queries 24,118 
Number of queried classes 8,711 
Number of unique tokens in the context 108,700 
Number of target methods with comments 4,130 
Average number of candidate properties per class 30.28 (48.67) 
Average number of target method parameters 1.08 (1.23) 
Average number of methods in the call context 1.89 (2.17) 
Average number of conditions in the WHERE clause 1.06 (0.95) 
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(i.e., the Java class) of the createQuery method call to locate HQL queries by determining keywords 
such as SELECT and FROM. Note that the HQL queries constructed by concatenation of Java String 
and StringBuilder are manually concatenated. Then, we locate and populate the context (e.g., the meth-
ods that call the method containing the query) of the HQL queries. 

4.2 Data Filtering and Preprocessing 

After the extraction of textual HQL queries and their context, we use the built-in HQL structural parser 
of Hibernate to transfer the queries into ASTs, and uncompilable HQLs are discarded. We filter the 
queries according to the task definition in Section 2 using their ASTs, including: 

• Discard UPDATE and DELETE queries 
• Discard queries containing JOIN, EXISTS and OR 
• Discard queries containing multiple properties within the SELECT clause, or more than 4 levels 

of data access (i.e., more than 3 “.”) 
• Discard queries containing customized aggregate functions 
• Discard queries with tokens reflecting testing purpose, e.g., foo and bar 
• Replace all value expressions with a placeholder “:value”, and ensure it appears in the right of the 

expression, e.g., “:value <= field” will be replaced with “field >=: value” 
Finally, we remove the duplicated HQL queries. As a result, we manage to locate 24,118 HQL que-

ries with 8,711 queried classes. The dataset is released to GitHub5, and we show its statistics in Table 
1. The standard deviation of the candidate property numbers is high in that the data classes of some 
projects contain up to hundreds of candidate properties. To avoid our task being too simple or compli-
cated, we further filter out the queries with only a FROM clause and more than 4 conditions in the 
WHERE clause. Therefore, the final size of the dataset we use is 19,228. 

5 Model: HQLgen 

5.1 Overall Framework 

Inspired by the state-of-the-art models on Text2SQL task (Xu et al. 2017; Yu et al. 2018a), we form 
our task as a template filling problem. Comparing to generating the tokens in the HQL query sequen-
tially, e.g., by applying Seq2Seq models, this approach has two advantages: it ensures the generated 
results are syntactically correct, and could address the unordered nature of the conditions concatenated 
by AND. When generating the WHERE clause, we first predict the number of conditions #COND, 
and then decide which properties will appear in this clause (since subqueries are not included, each 
condition relates to only one property) and assign operators to them. Similarly, the number of proper-
ties #SEL in the SELECT clause is first predicted, followed by property and aggregator selection. 
Fig.2 shows the overall architecture of the proposed model, HQLgen, where the arrows denote data-
flows. It includes two independent predictors for the SELECT and WHERE clause respectively. The 
inputs will be first tokenized and embedded into real-valued vectors. Considering that an element in 
the code snippet can have a type and a name, we train both type and name embeddings for each token. 
After that, different types of context are further encoded by Long Short-Term Memory (LSTM)  

 
5 https://github.com/zy-zhou/HQLgen 
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(Hochreiter and Schmidhuber 1997) networks. Finally, the prediction of each slot is treated as a clas-
sification problem, in which we apply attention mechanism over the encoded context and use Multi-
layer Perceptron (MLP) as classifier. 

5.2 Input Representation 

We first extract the context of the HQL query to be predicted via a static analysis program described 

 
Fig. 2 Overall architecture of HQLgen. Arrows denote dataflows. 

 
Fig. 3 Embedding sequence of method signature (left) and properties (right). Arrows denote embedding look-ups and 
avg denotes average of vectors. 
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in Section 4, e.g., obtain the content marked blue in Fig.1, and then encode them as follows. 

5.2.1 Building Token Embeddings 

Due to the naming conventions, identifiers in the program are always consist of several words or ab-
breviations. To better capture their semantics, each identifier in the context is first split into subtokens 
according to camelCase and snake_case. After that, we build a vocabulary for these subtokens, and 
each subtoken is mapped to an embedding vector (will be detailed later). The elements in the given 
context can be divided into four categories: method names, method parameters, comments and prop-
erties. They carry different amount and types of information so we treat them differently. 

 Parameters and properties. It is typical to transfer the parameters of an HQL query through 
method parameters, e.g., the parameter “name” in Fig.1. Therefore, a parameter of the target method 
is likely to be associated with a property that appear in the query. Based on this observation, a method 
parameter or property is represented by a single vector for matching purposes. In detail, its embedding 
is a concatenation of its name embedding and type embedding, where the name and type embeddings 
are the averages of their corresponding subtoken embeddings. The right part of Fig.3 illustrates the 
embedding vectors of the properties in Fig.1. With type information, the matching of parameters and 
properties will be much easier, since the ones with the same type will get similar embeddings. As 
described before, a property may be an instance of another class and could introduce new properties 
from that one, e.g., the implicit property “entities.id” in Fig.1. For such nested properties, we treat 
them as bags of subtokens split by “.” so they can be embedded just like others. 

 Method names and comments. Different from method parameter, method name and comment are 
more informative and usually reflect the functionality of the query. Therefore, we represent a method 
name or comment as a sequence of its subtoken embeddings. Similarly, each embedding in the se-
quence is also concatenated by a type embedding. We assign a special type <\m> and <\t> to the sub-
tokens within the method name and comment respectively, so that the model could distinguish them 
from the parameters and properties. The left part of Fig.3 illustrates the embedding sequence of the 
target method signature in Fig.1. Note that the return types are not used by HQLgen, since we found 
that the return values of most target methods are not query results and are noisy for predicting the 
query. 

 Accordingly, the model input consists of type subtokens (the ones within parameter and property 
types together with <\m> and <\t>) and name subtokens (the rest of them). They are mapped to em-
bedding vectors through two different embedding layers: 

𝒆𝒆𝑖𝑖𝑡𝑡 = 𝑾𝑾𝑒𝑒
𝑡𝑡 𝒕𝒕𝑖𝑖 

𝒆𝒆𝑗𝑗𝑛𝑛 = 𝑾𝑾𝑒𝑒
𝑛𝑛𝒏𝒏𝑗𝑗 (1) 

where 𝒕𝒕𝑖𝑖  and 𝒏𝒏𝑗𝑗  denote one-hot vectors of type subtoken and name subtoken, 𝑾𝑾𝑒𝑒
𝑡𝑡   and 𝑾𝑾𝑒𝑒

𝑛𝑛  are 
learnable embedding matrices, 𝒆𝒆𝑖𝑖𝑡𝑡 and 𝒆𝒆𝑗𝑗𝑛𝑛 are their embedding vectors. In this way, a same subtoken 
will have different embeddings if it appears both in a type or a name, e.g., the token “entity” in Fig.3, 
and thus it will show different semantics to the model. 

5.2.2 Encoding the Context 
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The input context is then represented by three embedding sequences: 

• The connection of target signature embedding sequence and comment embedding sequence. 
• The connection of signature embedding sequences in the call context. 
• Property embedding sequence. 

To model the sequential information, each embedding sequence 𝒆𝒆 = [𝒆𝒆0, 𝒆𝒆1, … , 𝒆𝒆𝐿𝐿−1] is encoded by 
a recurrent neural network (RNN), namely bidirectional LSTM (biLSTM): 

𝒉𝒉0,𝒉𝒉1, …𝒉𝒉𝐿𝐿−1 = biLSTM(𝒆𝒆0, 𝒆𝒆1, … , 𝒆𝒆𝐿𝐿−1) (2) 

where 𝒉𝒉𝑖𝑖 denotes the hidden state of the i-th embedding and L is the sequence length. Each output 
element of the biLSTM, namely 𝒉𝒉𝑖𝑖, is a semantic vector which summarizes both of the preceding 
elements and following elements in the sequence. Considering that the three embedding sequences 
have different patterns and convey different kinds of information, we apply different biLSTMs for 
them, as shown in Fig.2. There are two reasons for encoding the target signature with the comment by 
a single biLSTM. First, we find that only a few target methods are commented and such examples 
seem not enough to properly train a separate RNN. Second, the target signature and comment could 
both reflect the functionality of the target method so we expect the RNN to treat them similarly. For 
simplicity, we denote the encoded sequences as 𝒉𝒉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , 𝒉𝒉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  and 𝒉𝒉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  respectively. Since the 
properties are supposed to be unordered, encoding them into a sequence seems to be questionable. 
However, our experimental results show that running an RNN over them could significantly improve 
the results, as shown later in Section 6. 

5.3 Predicting HQL 

5.3.1 Attention Mechanism 

Inspired by SQLNet, we employ attention mechanism to let a property attend to the elements in 
𝒉𝒉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝒉𝒉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. Given the hidden state 𝒉𝒉𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 of the i-th property, we compute a normalized at-
tention weight 𝛼𝛼𝑖𝑖𝑖𝑖 for each element in 𝒉𝒉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡: 

𝑤𝑤𝑖𝑖𝑖𝑖 = �𝒉𝒉𝑖𝑖
𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟�

𝑇𝑇
𝑾𝑾𝑎𝑎

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝒉𝒉𝑗𝑗
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

𝛼𝛼𝑖𝑖𝑖𝑖 =
exp�𝑤𝑤𝑖𝑖𝑖𝑖�

∑ exp(𝑤𝑤𝑖𝑖𝑖𝑖)𝑘𝑘
(3) 

where 𝑾𝑾𝑎𝑎
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is a parameter matrix. Then a weighted sum of the elements in 𝒉𝒉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is computed 

for this property: 

𝒉𝒉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|𝑖𝑖 = �𝛼𝛼𝑖𝑖𝑖𝑖𝒉𝒉𝑗𝑗
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑗𝑗

(4) 

Intuitively, 𝒉𝒉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|𝑖𝑖 extracts the useful information in 𝒉𝒉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 with respect to the i-th property, and 
serves as a high-level vector representation of the target signature and comment (e.g., the parameter 
“name” will be dominating in the sequence when evaluating the property “name”). We obtain 𝒉𝒉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|𝑖𝑖 
similarly, but with different parameter matrix 𝑾𝑾𝑎𝑎

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. Since the predictions of the slots require global 
information of the context, the high-level representations 𝒉𝒉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|𝑖𝑖 and 𝒉𝒉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|𝑖𝑖 are used as inputs of 
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the MLP classifiers. 

5.3.2 Filling the Slots 

To generate the WHERE clause, we first predict the number of its conditions, namely #COND. Since 
we limit the max number of conditions to 4, this is cast as a 5-way classification problem with the label 
ranges from 0 to 4. The probability of each number is computed via an MLP: 

𝒑𝒑#𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = softmax�𝑾𝑾1
#𝐶𝐶 tanh�𝑾𝑾2

#𝐶𝐶�𝒉𝒉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|𝑖𝑖

𝑖𝑖

+ 𝑾𝑾3
#𝐶𝐶�𝒉𝒉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|𝑖𝑖

𝑖𝑖

+ 𝑾𝑾4
#𝐶𝐶𝒗𝒗#𝑝𝑝 + 𝒃𝒃2#𝐶𝐶� + 𝒃𝒃1#𝐶𝐶� (5) 

where 𝑾𝑾∗
∗ and 𝒃𝒃∗∗ denote parameter matrices and bias vectors (same notations will be used below) 

and 𝒗𝒗#𝑝𝑝 is the one-hot vector of the number of parameters in the target method. As mentioned before, 
a parameter of the target method is possibly related to a property in the WHERE clause, so we consider 
𝒗𝒗#𝑝𝑝 as an important feature to predict #COND. Next step is to compute the probability of the i-th 
property to appear in the WHERE clause: 

𝑝𝑝𝑖𝑖
$𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝐶𝐶 = 𝜎𝜎�(𝒖𝒖𝐶𝐶)𝑇𝑇 ReLU�𝑾𝑾1

𝐶𝐶𝒉𝒉𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑾𝑾2

𝐶𝐶𝒉𝒉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|𝑖𝑖 + 𝑾𝑾3
𝐶𝐶𝒉𝒉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|𝑖𝑖 + 𝒃𝒃2𝐶𝐶� + 𝒃𝒃1𝐶𝐶� (6) 

where 𝒖𝒖∗ denotes a parameter vector (same notations will be used below), δ denotes sigmoid function 
and ReLU denotes the rectified linear unit (Nair and Hinton 2010). To avoid ambiguity, we rename the 
$PROP slot in the WHERE and SELECT clause to $PROP_C and $PROP_S respectively. During 
prediction, we select #COND properties with the highest probabilities to form the WHERE clause. 
For each of these properties, we assign it an operator through a 9-way classification (available opera-
tors are described Section 2): 

𝒑𝒑$𝑂𝑂𝑂𝑂|𝑖𝑖 = softmax�𝑾𝑾1
𝑂𝑂 tanh�𝑾𝑾2

𝑂𝑂𝒉𝒉𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑾𝑾3

𝑂𝑂𝒉𝒉𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎|𝑖𝑖 + 𝑾𝑾4
𝑂𝑂𝒉𝒉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|𝑖𝑖 + 𝒃𝒃2𝑂𝑂� + 𝒃𝒃1𝑂𝑂� (7) 

where 𝒑𝒑$𝑂𝑂𝑂𝑂|𝑖𝑖 contains the probabilities to choose each operator for the i-th property. 

 Since we limit the SELECT clause to include no more than one property, the value of #SEL can 
only be 0 or 1. Different from predicting #COND, the call context is not used when predicting #SEL 
because we find this yields better results. Therefore, the probability of #SEL = 1 is computed as 

𝑝𝑝#𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜎𝜎 �(𝒖𝒖#𝑆𝑆)𝑇𝑇 tanh�𝑾𝑾1
#𝑆𝑆�𝒉𝒉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|𝑖𝑖

𝑖𝑖

+ 𝒃𝒃2#𝑆𝑆� + 𝒃𝒃1#𝑆𝑆� (8) 

If #SEL = 1, the choosing of $PROP_S is formed as multi-class classification: 

𝒑𝒑$𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑆𝑆 = softmax�𝑾𝑾1
𝑆𝑆 ReLU�𝑾𝑾2

𝑆𝑆𝒉𝒉𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑾𝑾3

𝑆𝑆𝒉𝒉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|𝑖𝑖 + 𝑾𝑾4
𝑆𝑆𝒉𝒉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|𝑖𝑖 + 𝒃𝒃2𝑆𝑆� + 𝒃𝒃1𝑆𝑆� (9) 

Finally, for the aggregator, we compute 

𝒑𝒑$𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = softmax�𝑾𝑾1
𝐴𝐴 tanh�𝑾𝑾2

𝐴𝐴𝒉𝒉𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑾𝑾3

𝐴𝐴𝒉𝒉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|𝑖𝑖 + 𝑾𝑾4
𝐴𝐴𝒉𝒉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|𝑖𝑖 + 𝒃𝒃2𝐴𝐴� + 𝒃𝒃1𝐴𝐴� (10) 

where the output probabilities are for the 5 aggregators mentioned in Section 2 plus “no aggregator”. 
If #SEL = 0, the term 𝑾𝑾2

𝐴𝐴𝒉𝒉𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is omitted from (10). In this case, the aggregation is performed over 

the objects of the target class. 

During inference, the slot values with the highest probabilities computed by HQLgen are selected. 
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After that, we recover the whole HQL query according to the predicted values and the template defined 
in Section 2. 

5.4 Training 

The prediction of #COND, $OP, $PROP_S and $AGGR are multi-class classification problems, so 
they use standard cross-entropy loss: 

ℒ∗ = −� 𝑦𝑦𝑖𝑖 log(𝑝𝑝𝑖𝑖∗)
𝑁𝑁−1

𝑖𝑖=0

(11) 

where N is the number of classes, 𝑦𝑦𝑖𝑖 = 1 if the label is i else 0, and “*” denotes one of the above slots. 
The prediction of #SEL is a binary classification problem, so its loss function is 

ℒ#𝑆𝑆𝑆𝑆𝑆𝑆 = −[𝑦𝑦 ∙ log(𝑝𝑝#𝑆𝑆𝑆𝑆𝑆𝑆) + (1 − 𝑦𝑦) log(1 − 𝑝𝑝#𝑆𝑆𝑆𝑆𝑆𝑆)] (12) 

where y is the true value of #SEL. The prediction of the properties in the WHERE clause is similar to 
a multi-label classification, but the total number of labels (i.e., the number of candidate properties) is 
varied for each example. Therefore, it uses binary cross-entropy loss: 

ℒ$𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝐶𝐶 = − ���𝛼𝛼𝑦𝑦𝑖𝑖 log�𝑝𝑝𝑖𝑖
$𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝐶𝐶� + (1 − 𝑦𝑦𝑖𝑖) log�1 − 𝑝𝑝𝑖𝑖

$𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝐶𝐶��
𝑃𝑃−1

𝑖𝑖=0

� (13) 

where P is the number of candidate properties for the given HQL query, 𝑦𝑦𝑖𝑖 = 1 indicates that the i-th 
property actually appear in the WHERE clause and 𝑦𝑦𝑖𝑖 = 0 otherwise. Here the hyperparameter α is 
set to 3 following Xu et al. (2017). Because most of the candidate properties do not occur in the 
WHERE clause, α is introduced to reward the model if it chooses a correct property. 

 As shown in Fig.2, HQLgen includes two separate modules: a SELECT predictor and a WHERE 
predictor. Their loss functions ℒ𝑆𝑆𝑆𝑆𝑆𝑆 and ℒ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 are computed by 

ℒ𝑆𝑆𝑆𝑆𝑆𝑆 = ℒ#𝑆𝑆𝑆𝑆𝑆𝑆 + ℒ$𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑆𝑆 + ℒ$𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (14) 

ℒ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ℒ#𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + ℒ$𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝐶𝐶 + ℒ$𝑂𝑂𝑂𝑂 (15) 

Since the prediction of $OP and $AGGR is depend on the results of $PROP_C and $PROP_S respec-
tively, we pass the ground truth values of the latter to (7) and (10) during training, so that these sub-
modules can be better guided. The learnable parameters (including the embedding layers, biLSTM 
encoders and MLPs) of the two predictors are not shared, which means they can be separately opti-
mized. We also tried to use shared embedding layers for them but it shows slightly worse performance. 

5.5 Implementation Details 

The dimensions of name and type embeddings are both 96, while the hidden size of the encoders is set 
to 32. We initialize the parameters using Glorot initialization (Glorot and Bengio 2010). The training 
objectives (14) and (15) are optimized using Adam (Kingma and Ba 2014) with initial learning rate of 
0.001 and batch size of 32. We clip gradient norm by 5 and apply dropout of 0.4 on the embedding 
vectors and outputs of the encoder LSTMs. To avoid over-fitting, we apply early stop to both predictors. 
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Specifically, we stop training when the validating accuracy (will be explained in Section 6) of the 
clauses do not improve within 4 epochs and pick the best model. Both predictors are trained for no 
more than 25 epochs. We implement HQLgen using PyTorch 1.7 with CUDA 11.0 and CuDNN 8.0.5. 
It is evaluated on a CentOS server with an RTX3090 GPU. 

6 Evaluation 

6.1 Evaluation Settings 

We use matching accuracy to evaluate the queries generated by HQLgen quantitively. In detail, we 
rewrite the ground truth HQL queries according to the template defined in Section 2, and then examine 
whether they match the generated ones ignoring the order of the WHERE conditions. After that, we 
compute the following metrics: 

• ACC. Proportion of the generated queries that fully match the ground truth queries. 
• ACCSEL. Proportion of the correctly generated SELECT clauses. This is the stop criterion of the 

SELECT predictor. 
• ACCWHERE. Proportion of the correctly generated WHERE clauses. This is the stop criterion of 

the WHERE predictor. 
• ACCPROP_S. Accuracy of the predictions of $PROP_S. #SEL = 0 is considered as an extra label 

for $PROP_S when computing the accuracy here. 
• ACCAGGR. Accuracy of the predictions of $AGGR. 
• ACC#COND. Accuracy of the predictions of #COND. 
• MCOND. Proportion of the generated WHERE clauses that have at least one correct condition. 
These metrics reflect the overall performance of HQLgen and its submodules. A better metric could 
be the execution accuracy of the query results. Unfortunately, it is impossible to compile all the col-
lected projects and execute the queries. We will try to calculate the execution accuracy on some high-
quality projects in the future. 

 We employ 5-fold cross validation to obtain predicted results of all examples. When splitting the 
data, we use two different strategies: mixed and cross-project. With the first setting, all examples are 
randomly divided into 5 folds. With cross-project setting, the examples from the same project will be 
assigned to a fold, so that the projects in the test set are not exposed during training and the generali-
zation ability of HQLgen is further evaluated. 

6.2 A Rule-based Baseline 

To the best of our knowledge, there is no effort on automatically generating HQL queries from program 
context. Nevertheless, to better verify the effectiveness of HQLgen, we develop a rule-based model as 
a baseline to compare with. It is built upon massive observations and statistical characteristics (will be 
detailed in Section 6.4) of the code corpus. The overall objective of this baseline is same as HQLgen, 
i.e., to fill the template defined in Section 2, but the predictions it makes is based on various rules 
described below. 

Prediction of $AGGR and #SEL. We first check whether the target method name contains any 
aggregator name. If true, $AGGR will be filled with the occurred aggregator, else the baseline considers 
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that no aggregator is used in the SELECT clause. For example, given a target method name 
“getCount”, the baseline will choose COUNT as the aggregate function. Since we find that most of the 
queries in our dataset do not select a specific property, the baseline simply assigns 0 to #SEL. 

Prediction of $PROP_C and $OP. As stated before, the target method parameters are likely to be 
associated with the properties in the WHERE clause. Therefore, for each target method parameter, we 
check whether it matches a candidate property. If true, a WHERE condition will be generated for the 
matched property. Here we consider two variable matches if both of their tokenized version of type 
and value (split according to Section 5.2.1) matches. For example, a parameter “int categoryID” 
matches a property “int category_id”. Since “=” is the most frequently used operator in the conditions, 
the baseline simply assigns “=” to $OP. 

Since we focus on the predictions of simple queries, we assume that such a well-designed heuristic 
model could be a strong baseline against HQLgen. In fact, queries like the ones in Fig.1 can be easily 
generated by this baseline. Besides, it should be noted that this baseline is an unsupervised approach 
so it will not be affected by the data splitting strategy. 

6.3 Accuracy of the Generated Queries 

In this section, we report the scores in terms of above metrics achieved by HQLgen and the baseline. 
We also conduct an ablation study to examine the effectiveness of the mechanisms proposed in Section 
5, by introducing the following variants of HQLgen: 

• -call context. The call context is not considered by HQLgen. 
• -type embedding. Type embeddings are not learned for the context. Instead, only name embed-

dings are built and fed into the encoders. 
• -property encoder. Replace the biLSTM encoder for the property embedding sequence by a fully-

connected neural layer with tanh activation. This encodes the embeddings into vectors of 64-de-
mentional, which is the same dimension as the biLSTM outputs. 

• -target parameter. Remove the method parameters from the target signature. 
Their results are shown in Table 2. As seen, the baseline could accurately generate 19.19% of the 

Table 2 Accuracy of the generated HQL queries 

Approach ACC ACCSEL ACCPROP_S ACCAGGR ACCWHERE ACC#COND MCOND 
Rule-based Baseline 19.19% 75.44% 79.71% 92.44% 32.88% 38.46% 30.62% 

M
ixed 

HQLgen 34.52% 81.78% 84.09% 94.79% 39.98% 71.16% 50.97% 
-call context 34.04% 80.75% 83.07% 94.60% 39.46% 71.69% 51.51% 
-type embedding 29.16% 74.81% 77.05% 94.37% 35.37% 68.41% 49.18% 
-property encoder 29.30% 76.22% 78.59% 93.20% 35.20% 70.32% 45.59% 
-target parameter 25.75% 77.24% 79.82% 94.22% 30.60% 63.40% 44.88% 

C
ross-Project 

HQLgen 29.11% 75.83% 78.44% 93.19% 34.50% 68.09% 44.52% 
-call context 28.85% 76.88% 79.51% 93.27% 34.27% 67.81% 43.71% 
-type embedding 24.52% 73.09% 75.72% 93.43% 29.98% 64.30% 41.18% 
-property encoder 24.69% 72.12% 74.88% 92.49% 30.26% 68.46% 38.88% 
-target parameter 20.90% 72.77% 75.22% 93.94% 25.41% 62.20% 35.80% 
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queries, denoting that the rules we defined are effective. Compared to the baseline, HQLgen achieves 
significantly higher accuracy on full query match. Specifically, it achieves 34.52% and 29.11% ACC 
scores, which are acceptable scores considering the limited information provided by the input context. 
HQLgen also outperforms the baseline on all metrics except for ACCPROP_S under different data split-
ting strategies. Checking the scores obtained by the two predictors, it is clear that the WHERE clause 
is much more challenging to predict. The number of correctly generated WHERE clause is less than 
half of the correct SELECT clause for both of the baseline and HQLgen. We can find that $AGGR is 
the easiest to predict, since most of the queries do not include an aggregate function. Most of the 
queries do not select specific properties as well, so ACCPROP_S is also high. HQLgen performs obvi-
ously better on predicting the WHERE clause than the baseline. HQLgen achieves more than 44% 
and 50% on MCOND with different settings, i.e., almost half of its predictions capture at least one correct 
condition, while the baseline only achieves 30.62%. However, its ACCWHERE scores are around 10% 
lower than MCOND. This suggests that about 10% of the predicted queries are flawed due to missing 
conditions in the WHERE clause. Due to the lack of detailed knowledge of the target class and its 
properties, some conditions cannot be predicted from the context we use. Overall, HQLgen is proved 
to be effective compared with the baseline. The main reason is that the neural model we designed can 
better handle the semantic associations between the identifiers in the program, while the heuristics are 
heavily dependent on strictly named identifiers and are not suitable in many situations. We will further 
discuss this in Section 7. An interesting phenomenon is that although the ACCSEL and ACCWHERE 
scores of HQLgen on cross-project setting are close to the baseline, it still obtains much higher ACC 
score. This suggests that their predictions are orthogonal on some examples. In future work, it is worth 
trying to enhance HQLgen via heuristics. 

 Comparing HQLgen to its variants, it shows the highest ACC scores on both splitting settings, which 
demonstrates the effectiveness of our designs. However, the performances of its submodules are not 
always the best. With cross-project setting, -call context scores higher on the SELECT clause, indi-
cating that the call context is less useful to predict this clause when generalizing to new projects. When 
the projects are mixed, -call context scores higher on ACC#COND and MCOND. Since the call context 
may not highly related to the target HQL query, ignoring it could make the outputs of the submodules 
less biased in some cases. However, the call context is still proved to be helpful considering the overall 
performance, especially the match of the full WHERE clause. Removing the type embeddings results 
in obviously lower results on all metrics, which demonstrates that the types are extremely useful for 
matching the parameters and properties, and our input representations are effective. Replacing the 
RNN encoder for the property sequence by a nonlinear layer leads to significantly worse scores as well. 
Although the properties are supposed to be unordered, encoding them together in a sequence could 
provide a global view of the target class, and thus the relationship between the properties can be better 
modeled. Ignoring the target method parameters results in even bigger decrease in ACC, which verifies 
our judgement on their importance in choosing the properties. Despite that most scores of -target pa-
rameter are worse than HQLgen, its ACCAGGR is better with cross-project setting. We assume the rea-
son could be that the aggregator is easier to be inferred from only the method name when there is no 
knowledge from the same project. Since the code within different projects may highly varied due to 
different domains, programming styles and vocabularies, the cross-project performance of HQLgen is 
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relatively low, denoting that mining useful context within projects is important. 

6.4 Analysis on #SEL, $AGGR, #COND and $OP 

The predictions of #SEL, $AGGR, #COND and $OP are formed as multi-classification problems. In 
this section, we further analyze the model performance on these slots by examining the confusion 
matrices and F-measure scores, as shown in Fig.4 and Table 3 respectively. Specifically, to take label 
imbalance into account, we compute the weighted macro-F1 scores: 

𝐹𝐹1𝑖𝑖 =
2 ∙ 𝑃𝑃𝑖𝑖𝑅𝑅𝑖𝑖
𝑃𝑃𝑖𝑖 + 𝑅𝑅𝑖𝑖

 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚-𝐹𝐹1 = �𝑤𝑤𝑖𝑖𝐹𝐹1𝑖𝑖
𝑖𝑖

(16) 

where 𝑃𝑃𝑖𝑖, 𝑅𝑅𝑖𝑖 is the precision and recall on the i-th label respectively, and 𝑤𝑤𝑖𝑖 is the proportion of true 
instances for the i-th label. The results on $OP slot are collected from the generated WHERE condi-
tions that hit the correct properties. According to Fig.4, the labels of these subtasks are extremely 
imbalanced. As seen, the great majority of the HQL queries do not have a property or an aggregator in 
their SELECT clauses, or have only one condition in their WHERE clauses. Besides, the “=” operator 
is used far more frequently than other operators. Despite of the imbalanced labels, HQLgen shows 
good classification performance according to Table 3, where its weighted macro-F1 scores are all 
higher than 65%. Fig.4 (a) shows that HQLgen is able to identify 59% (2,306) of the queries that 
actually choose a property via their SELECT clauses. The most used aggregate function is COUNT, 
followed by MAX and SUM, where HQLgen can correctly predict 55.4% (643), 33.3% (83) and 33.8% 
(44) of them respectively. On contrary, AVG and MIN are seldomly applied so the model can hardly 
know when to use them. According to Fig.4 (c), the model tends to miss conditions when actual 
#COND is larger than 2, indicating that the model has difficulty on generating complex WHERE 
clauses. “>”, “<”, “IN” and “LIKE” are the most used operators other than “=”. From Fig.4 (d), we 
can find that our model is able to tell “>” and “<” apart from other operators but has some trouble in 
distinguishing these two. On the other hand, “!=”, “IS NULL”, “IN” and “LIKE” are always confused 
with “=”, showing the challenges in predicting them. We will discuss why HQLgen fails via analyzing 
its output examples in Section 7. Overall, Fig.4 and Table 3 suggests out approach could be improved 
by better handling the imbalanced labels of #SEL, $AGGR, #COND and $OP, e.g., by using sampling 
techniques. 
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(a) Predictions on #SEL 

 
(b) Predictions on $AGGR 

 
(c) Predictions on #COND 

 
(d) Predictions on $OP 

Fig. 4 The confusion matrices of the predictions (with mixed data splitting) on #SEL, $AGGR, #COND and $OP. 

Table 3 The weighted macro F1 scores on #SEL, $AGGR, #COND and $OP 

Splitting #SEL $AGGR #COND $OP 
Mixed 85.62% 94.20% 69.33% 90.43% 
Cross-Project 80.29% 92.35% 65.43% 86.92% 

Table 4 The impact of method comment on performance 

Splitting Comment ACC ACCSEL ACCPROP_S ACCAGGR ACCWHERE ACC#COND MCOND 

Mixed 
True 34.73% 81.98% 84.52% 94.92% 40.12% 70.13% 52.51% 
False 29.83% 78.03% 80.42% 94.09% 35.40% 67.29% 51.32% 

Cross-
Project 

True 25.43% 74.42% 76.47% 92.99% 30.42% 63.74% 43.73% 
False 26.16% 74.24% 76.96% 93.85% 31.67% 64.05% 45.81% 
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7 Discussion 

7.1 Effectiveness of Comments 

Since code comments are considered crucial in program comprehension (Sridhara et al. 2010), we 
discuss the impact of comments on the performance of HQLgen in this section. Note that only 17% 
(3,268) of our target methods are commented, so compute the metrics on the whole dataset is not 
reasonable. Therefore, we train HQLgen with and without method comments via the settings described 
in Section 6.1, and then collect the predictions on these examples. The results are shown in Table 4. 
With mixed data splitting, taking comments as inputs significantly improves the scores on all metrics. 
In particular, ACC is increased by 4.9% compared to using method signatures only. Since most com-
ments describe the functionality of the target method, they are helpful when generating the executed 
queries. However, using no comments performs slightly better with cross-project splitting. Actually, 
only a few projects contain commented target methods, so the model will fail to learn how to leverage 
the comments if these projects are assigned to the test set. For future work, it is worth trying to use the 
comments in the call context and target class. 

7.2 Qualitative Analysis 

We illustrate four good predictions plus four flawed ones generated by HQLgen in Table 5 and Table 
6 respectively for qualitative analysis. For each of these examples, the target method, call context and 
number of candidate properties (#Properties) are shown together. The ground truth queries in the target 
method are in italic and marked in red. Due to limited space, we show part of target method body for 
Example 1, 5, 7, and part of call context for Example 4. 

In Example 1, the method parameters are passed to the HQL query and they have the same names 
and types as the corresponding properties. Meanwhile, they also appear in the call context of the target 
method. In this case, the proposed model successfully captures this information and generates the cor-
rect query. Example 2 is more challenging in that the parameter name “user_id” does not occur in the 
candidate properties and the call context is not helpful. Moreover, the desired property “id” is nested 
in the object “gebruikerid” but not defined directly by the target class (actually, there is a property 
“Advertentie.id” that may confuse the model). Thanks to our input representations, the token “Ge-
bruiker” in the method name is separately embedded in the input sequence so that the property “ge-
bruikerid” is highlighted when computing the attention weights via (3), and HQLgen eventually pro-
duce the matched query. By contrast, the rule-based baseline fails in this case. Example 3 further illus-
trates the effectiveness of the representations of parameter and property. Using camelCase and “.” to 
split the inputs, the method parameters “categoryId”  
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Table 5 Good predictions from HQLgen 

Example 1 

Target 
Method 

public User verifyUser(String username, String password) { 
    Session session = sessionFactory.getCurrentSession(); 
    Query query = session.createQuery("FROM  User as u where u.username = :username 
and u.password = :password").setString("username", username).setString("password", 
password); 

User user = (User) query.uniqueResult(); 
…… 

} 
Called In public ExtResult loginUser(String username, String password) 

#Properties 21 

Prediction SELECT User FROM User WHERE User.username = :value AND User.password = :value 

Example 2 

Target 
Method 

@Override 
public List<Advertentie> getAdvertentieFromGebruiker(Integer user_id) { 
    return em.createQuery("SELECT a FROM Advertentie a WHERE a.gebruikerid.id ='" + 
user_id + "'").getResultList(); 
} 

Called In protected void processRequest(HttpServletRequest request, HttpServletResponse re-
sponse) 

#Properties 23 

Prediction SELECT Advertentie FROM Advertentie WHERE Advertentie.gebruikerid.id = :value 

Example 3 

Target 
Method 

@SuppressWarnings("unchecked") 
@Override 
@Transactional 
public List<Product> findByCategoryAndProducer(int categoryId, int producerId) { 
    return sessionFactory.getCurrentSession().createQuery("from Product p where 
p.producer.id = :producerId and p.category.id = :categoryId").setParameter("pro-
ducerId", producerId).setParameter("categoryId", categoryId).list(); 
} 

Called In 
public List<Product> findByCategoryAndProducer(int productCategoryId, int producerId) 

public String getProductsByCategory(Integer categoryId, Map<String, Object> map) 

#Properties 58 

Prediction SELECT Product FROM Product WHERE Product.category.id = :value AND Product.producer.id 
= :value 

Example 4 

Target 
Method 

@Override 
public Long getCount(Marka marka) { 
    Query query = getSession().createQuery("SELECT COUNT(*) FROM Termek t WHERE 
t.marka = :marka"); 
    query.setParameter("marka", marka); 
    return (Long) query.list().get(0); 
} 

Called In 

public Long getTermekCount(Tipus tipus, Marka marka) 

public Long getRaktarCount(Tipus tipus) 

public Long getRaktarCount(Tipus tipus, Marka marka) 

public Long getCount(Integer statusz) 
public ActionForward execute(ActionMapping mapping, ActionForm form, HttpS-
ervletRequest request, HttpServletResponse response) 

#Properties 21 

Prediction SELECT COUNT (Termek) FROM Termek WHERE Termek.marka = :value 
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Table 6 Incorrect predictions from HQLgen 

Example 5 

Target 
Method 

@Override 
public BigDecimal getTotalByProAndSupp(Long proId, Long suppId) { 
    String hql = "select sum(amount) from Bill where projectNew.id=? and suppli-
ersAssess.suppliersId=?"; 
    Query query = getSession().createQuery(hql); 
    query.setParameter(0, proId); 
    query.setParameter(1, suppId); 

…… 
} 

Called In 

public Map<String, Object> getApplyDataByProNo(String proNo, String materialId, Long 
proId, Long suppId) 
public BigDecimal getTotalByProAndSupp(Long proId, Long suppId) 

public String getPayedByProNo() 

#Properties 126 

Prediction SELECT SUM (Bill.amount) FROM Bill WHERE Bill.processRunId = :value AND Bill.project-
New.id = :value 

Example 6 

Target 
Method 

public List<Video> findVideosByName(String videoName) { 
TypedQuery<Video> query = entityManager.createQuery("SELECT v from Video v where 

v.videoName LIKE :videoName", Video.class); 
query.setParameter("videoName", "%" + videoName + "%"); 
return query.getResultList(); 

} 
Called In public List<Video> getNameFilteredVideos() 

#Properties 19 

Prediction SELECT Video FROM Video WHERE Video.videoName = :value 

Example 7 

Target 
Method 

private void buildWordCount(@NonNull StringBuilder result, @NonNull Player p, @Nul-
lable Round roundItem) { 
    if (roundItem == null) {……} 
    else { 
        Object count = em.createQuery("SELECT count(w) FROM Word w WHERE w.player = ?1 
AND w.round = ?2 AND w.disabled = ?3").setParameter(1, p).setParameter(2, 
roundItem).setParameter(3, new Boolean(false)).getSingleResult(); 
    ……} 
} 

Called In private void buildPlayer(StringBuilder result, Player p, Room roomItem, Round 
roundItem, boolean roundC, boolean isCurrentPlayer) 

#Properties 20 

Prediction SELECT COUNT (Word) FROM Word WHERE Word.player = :value 

Example 8 

Target 
Method 

public List getTimeSlotEntries(String resourceID, boolean isParticipant, long from, 
long to) { 
    if (to <= 0) 
        to = Long.MAX_VALUE; 
    return _persister.createQuery("FROM CalendarEntry AS ce " + "WHERE ce.resourceID 
IN (:idlist) " + "AND ce.startTime < :end AND ce.endTime > :start " + "ORDER BY 
ce.startTime").setParameterList("idlist", createIDListForQuery(resourceID, isPartic-
ipant)).setLong("start", from).setLong("end", to).list(); 
} 

Called In public List getTimeSlotEntries(AbstractResource resource, long from, long to) 

#Properties 9 

Prediction SELECT CalendarEntry FROM CalendarEntry WHERE CalendarEntry.resourceID = :value AND 
CalendarEntry.startTime > :value 
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and “producerId” have exactly the same embeddings as the properties “category.id” and “producer.id”, 
so they are successfully selected by HQLgen. Note that these parameters also appear in the call context. 
The call context is even more useful in Example 4, since the frequently appeared token “count” and 
“marka” in it are important clues for the model to choose the corresponding aggregator and property. 
Therefore, taking call context into account is reasonable. 

 Table 6 illustrates the other four cases that HQLgen typically fails to generate matched results. In 
Example 5, the target method parameters are implicitly named via abbreviations, and the target class 
contains up to 126 candidate properties. We can find that HQLgen mistakenly links the parameter 
“proId” to “Bill.projectNew.id” and misses the correct property “Bill.suppliersAssess.suppliersId” as-
sociated with “suppID”. To better handle such identifiers, a possible solution is to complete the abbre-
viations according to their context before feeding them to the model. Fortunately, HQLgen is still able 
to predict the correct aggregator SUM. This denotes that it successfully captures the semantics of 
“getTotal” in the method names. Example 6 shows the challenge on identifying the operators. The 
generated query is almost correct except that the model confuses the operator “LIKE” with “=”. Un-
fortunately, even human participant can hardly determine “LIKE” is going to be used according to the 
provided context, especially for the poorly named parameter “videoName”. To achieve pattern-match-
ing via LIKE, a “%” must be included in the “videoName” parameter, and thus this parameter is a 
pattern expression rather than the name of a video. Similarly, the method name “findVideosByName” 
is also inappropriate since it indicates this method is to accurately find a video by its name instead of 
acting like a search engine. Moreover, this query is affected a common SQL anti-pattern called “poor 
man’s search engine” since such queries cannot always benefit from indexes (Nagy and Cleve 2017), 
which should be avoided in practice. 

Sometimes #COND is also challenging to predict, as shown in Example 7. There are two difficulties 
in predicting correct #COND here: First, the method parameter “result” is not for the HQL query; 
Second, the property “disable” in the ground truth is not mentioned in the context. Although HQLgen 
performs well on choosing the aggregator “COUNT” and the property “player”, it misses the other two 
WHERE conditions. The HQL query in Example 8 is more complicated, where the model is able to 
choose the correct properties “resourceID” and “startTime” but fails to assign them correct operators. 
Checking the target method body, the actual value passed to the placeholder “idlist” is a result of API 
call that takes “resourceID” and “isParticipant” as input. With the given context, it is impossible for 
the model to find out that the value of “resourceID” is a list, and thus it is no way to correctly yield the 
operator “IN”. On the other hand, the given context does not provide enough details to predict the 
operators for “startTime” and “endTime” as well. From our understanding, this project is affected by 
architecture erosion (Li et al. 2021) (i.e., boundaries disappear among layers and components) since it 
involves business logic of generating candidate values for query in the persistence code. Such actions 
should be performed in the call context of the target method, and the input of the target method should 
be prepared accordingly. Example 7 and 8 suggest that more project-related knowledge is necessary 
for the generation of complex queries, e.g., the detection of architecture erosion could be helpful for 
capturing potential business logic in the data persistence code. In summary, according to Table 6, alt-
hough the generated queries are not perfect in all scenarios, they could be helpful to the developers 
since they will work as expected after simple modifications. 
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7.3 Hyperparameter Selection & Time Cost 

The most important hyperparameter of HQLgen is the dimension of name/type embedding de and the 
hidden size of the LSTM encoder dh. To check their impact on model performance, we tune them from 
16 to 128 and evaluate HQLgen with mixed data splitting described in Section 6. When adjusting either 
de or dh, other hyperparameters remain unchanged. The obtained ACC scores are shown in Table 7. As 
seen, increasing de continuously improves ACC until it reaches 96, while the best dh is 32. This indi-
cates that HQLgen prefers relatively large embedding size but small encoder size. Intuitively, com-
pressing the embedded vectors into lower dimensions forces the model to extract important infor-
mation from inputs, and the reduced vectors could make the downstream classifications easier. Another 
reason why smaller dh works better could be that the input sequences of HQLgen are short so large 
RNN encoders are not required. The size of both SELECT and WHERE predictors is 64MB, resulting 
in a total model size of 128MB. One training epoch of HQLgen takes around 46 seconds, while pre-
dicting a batch of testing examples (the batch size is 32) only needs 0.09 second. Overall, the proposed 
approach is applicable. 

7.4 Threats to Validity 

The first threat to validity our approach to locate projects containing HQL queries. We use the criteria 
proposed by Nagy et al. (2015b) to locate projects containing HQL queries, i.e., locating the create-
Query method calls. However, there exists other implementations to write and define HQL queries, 
such as writing queries in the @Query annotation provided by Spring Data JPA. We evaluated this 
implementation using BOA, and we find only 621 projects were using this approach, which account 
for less than 3% of all available projects, and thus we do not take them into account. 

The second threat to validity is the dataset we built. Although we use certain rules to filter the extracted 
projects and HQL queries, there could still be noisy examples such as poorly named identifiers (e.g. 
“arg”, “Main”) and the ones within test projects. Moreover, the quality of the project in our dataset 
varies. We are not able to discriminate the quality of projects by simply looking at the GitHub stars, 
because most of them do not have stars since they are designed for organizational use or specific pur-
poses, which is less attractive to public than popular infrastructural projects or libraries developed by 
major open-source foundations (e.g., ASF, Eclipse). In future work, we may use static code quality 
analyzer and exploit manual inspection to generate a finer-grained dataset. 

The third threat to validity is that we do not consider execution accuracy. Since the quality of some 

Table 7 Performance on different embedding size de and RNN hidden size dh 

de (dh = 32) ACC dh (de = 96) ACC 
16 31.23% 16 31.45% 
32 32.54% 32 34.52% 
64 33.64% 64 32.92% 
96 34.52% 96 31.52% 

128 33.86% 128 31.75% 
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projects are not guaranteed, we cannot compile every project and generate their related database struc-
ture in the dataset. However, we believe we could include such analysis in the up-mentioned finer-
grained dataset. 

The fourth threat is that we did not involve human study. We consult 2 professional Java Web devel-
opers with more than 5 years’ experience on Hibernate ORM development about the quality of our 
generated queries. However, we find that they are very unconfident with their suggestion since they 
are not familiar with the business logic, context, and data schema of the software projects. Thus, we 
believe that using the original query as the gold standard with ACC as the indicator is reasonable. 

8 Conclusion 

In this paper, we introduce the task of automatically generating HQL queries from program context in 
order to assist the developers when writing data persistence codes. To address this problem, we propose 
a novel model named HQLgen based on deep learning and template filling. It embeds the context of a 
desired HQL query into vectors and encodes them via RNN, and then predicts the key elements in the 
query via attention mechanism and MLP. To construct the dataset for training and evaluation, we locate 
and extract projects containing HQL queries in GitHub followed by extensive cleaning and prepro-
cessing. Experimental results show that the proposed approach achieves an accuracy of 34.52% on 
generating simple HQL queries, and its outputs could be helpful to the developers. The collected da-
taset is also made publicly available. Despite that we limit the scope on the generation of simple queries, 
the results obtained by HQLgen suggest there is still much room for improvement on this task. For 
future work, we argue that it is necessary to identify, extract and leverage more useful information 
from the program context rather than turn to complex HQL queries. We will also try to incorporate 
useful rules into HQLgen to make it more robust. Moreover, we will extend our context to ORMs in 
other programming languages such as SQLAlchemy in Python. 
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