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To adapt to changing software requirements, developers need to maintain and modify
software through code changes. Predicting change-prone code can help developers to
reduce the cost of software maintenance in advance. Prior work confirmed code smell
intensity is a reliable metric for predicting change-prone classes. Community smell is a
derivation of the concept of code smell in open-source software development community,
it refers to poor communication and collaboration problems among developers. We add
community smell to existing change prediction models, and propose a software class
change prediction model integrating process metrics, code smell intensity metrics, anti-
pattern metrics, and community smell metrics, which takes into account the technicality
and organisational of software development. Experimental results demonstrate that when
Multilayer Perceptron is used to build a change prediction model, community smell
improves the baseline model by 4.4% and 31.5% in terms of F-Measure and Recall. In
addition, community smell improves baseline model performance to a greater extent in
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terms of Recall and Precision than code smell-related information.

Keywords: Community Smell; Change Prediction; Code Smell; Empirical Software En-
gineering.

1. Introduction

During the maintenance and development of software, software systems are con-
stantly being modified to match the growing needs of society to improve their per-
formance or eliminate potential threats. The original software system becomes more
complex and the program gradually suffers from design degradation, thus making
the software system progressively less maintainable. Software maintenance is a tech-
nical and socially relevant activity for developers. Identifying change-prone classes
in software systems as early as possible allows more maintenance resources to be al-
located to them in advance, to improve software maintenance efficiency. Therefore,
the prediction of change-prone classes is a crucial research content.

Change prediction could help arrange software quality assurance resources by
identifying code components that are prone to change, helping developers plan pre-
ventive maintenance actions, and controlling code complexity. To achieve effective
context-aware change prediction, researchers incorporate various information ex-
tracted from software artifacts. In terms of the goal and description of code changes,
Vonken et al. [1] incorporated code refactoring, and Pascarella et al. [2] involved
code review. In terms of the adaptivity of the model, Catolino et al. [3] considered
developer-related factors to construct a model for predicting change-prone classes by
defining developer-related factors. Kim et al. [4] and Soetens et al. [5] have studied
the factors that cause code classes in software systems to be change-prone.

In the refactoring of software code, code smell is defined by Fowler [6] as subopti-
mal design and choices applied by programmers during the development of software
projects. In earlier studies, Khomh et al. [7] and Palomba et al. [8] demonstrated
that classes associated with code smell in software systems are more likely to be
changed than other classes. Ambros et al. [9] confirmed in a study that classes
affected by code smell had a higher tendency to change compared to classes not
affected by code smell. Later, Catolino et al. [10] added the code smell intensity
metric, which describes the degree of smell-related information, to the prediction
model and found that the addition of the code smell intensity metric significantly
improved the performance of the change prediction model. Current change pre-
diction only examines source code or the change to the software by developers to
predict software systems with change-prone classes without taking into account the
organization and communication patterns between developers.

During the software development process, the accessibility of developers to excel-
lent communication and exchange is crucial to ensure that the software is developed
correctly. Tamburri et al. [11] defined a method for describing the organizational
and social structure of software engineering and investigate the impact of developer
organization and social structure on development problem solving and community
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welfare. In comparison, Caglayan et al. [12] proposed a method for modeling with
a collaborative approach among developers, which can assign issues arising from
development to relevant developers. Tamburri et al. [13] defined a term called ’com-
munity smell’ to explain social and organizational anti-pattern and suggest how
these can be mitigated based on observations of the software development industry.

As software development is a technical and organizational activity, to address
the lack of existing research which does not take into account the organizational
structure and collaboration patterns between developers, we propose a change pre-
diction model that adds community smells to existing change prediction models for
change-prone classes.

The main contributions of this experiment include:

1. A new change prediction model was designed and evaluated based on the com-
bination of Metrics used in the previous researcher’s model. Based on the best
performing baseline model from existing studies, we assess the contribution of
the community smell metric to the baseline model for change prediction in our
study. The results show that the community smell metric improves the perfor-
mance of the baseline model for predicting software class changes, as well as the
community smell metric has a significant impact on the prediction of change-
prone classes.

2. The feature importance of community smells in the change prediction model is
assessed. In the change prediction baseline model, we add three community smells
and calculate the strength of information gain provided by different community
smells to different models. Our results show that the information gain provided by
the Radio Silence community smell to the baseline model performance is higher
than that provided by both Organizational Silo and Missing Links community
smells.

3. We assess the performance of a combined model of community smell, code smell
intensity, and anti-pattern metrics in change prediction, in addition to empiri-
cally discussing the contribution of the combined smell metrics to the baseline
model.

The rest of this paper is organized as follows. Section 2 discusses research findings
on change prediction models and community smells. Section 3 examines and designs
predictive models for software class changes; Section 4 reports the experimental
results and analysis. Section 5 discusses the threats to the validity of empirical
research. Section 6 concludes this experimental work and outlines the way forward.

2. Related Work

2.1. Definition and impact of community smell

Developers with different cultures and development habits are often required to
join in the development of software systems, and Gren et al. [14] argues that social
interaction among developers is often influenced by physical and cultural distance
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and expertise. In research, suboptimal organization and poor interaction between
developers are referred to as community smells. The nine community smells de-
fined in the study by Tamburri et al. [13] are shown in Table 1, which explain the
poor organizational structure and communication patterns among developers from
different aspects.

Table 1. The name and description of community smell proposed by Tamburri

Name Acronym Description

Organizational Silo O.Silo A software development pattern in an organization where
the developers collaboratewith others but do not commu-
nicate with in the analyzed communication channel.

Black Cloud BC This reflects an information overload due to lackof struc-
tured communications or cooperation governance.

Lone Wolf LW This smell appears in cases where the development com-
munity presents unsanctioned or defiant contributors who
carry out their work with little consideration of their peers,
their decisions and communication.

Radio Silence RS A pattern such as there is unique knowledge and informa-
tion brokers toward different sub-communities.

Missing Links ML A pattern where there is a collaboration between develop-
ers and there is a lack of communication between collabo-
rators.

Prima Donnas PD One or several members repeatedly display condescension
and superiority and the developer has persistently divisive,
uncooperative behaviour.

Architecture Hood AH Developers blaming architectural decisions for any techni-
cal issues that arise during development, leading to unco-
operative behaviour across the development community.

Sharing Villainy SV The lack of knowledge exchange incentives or face-to-face
meetings limits the value of developers in sharing their
knowledgeand experience.

Organizational Skirmish OS Operations and development units are misaligned in their
organizational culture, in their communication habits and
in their expertise levels.

Developer-related metrics can provide more insight into the impact of personnel
factors on the performance of change prediction models; for example, Ostrand et
al. [15] studied the number of developers contributing to software modules in soft-
ware system development, Nucci et al. [16] studied developer attention to software
modules, and Calikli et al. [17] studied the level of confirmation bias of developers
to software system development. In a recent study, Eken et al. [18] investigated
personalised models for developers, training a dedicated model for each developer
through the historical development activities of developers in a software system.
Soltanifar et al. [19] provide a detailed study of the review activities of develop-
ers and the review process in which they are involved. Catolino et al. [20] propose
ways to use community smell to reconfigure development techniques, for example
by reconstructing development teams and developing appropriate communication
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plans for software development team members. Palomba et al. [21] further inves-
tigated the relationship between community smell, socio-technical consistency and
code smell intensity by investigating whether developers could perceive the rela-
tionship between code smell in projects and inter-organizational community smell,
and performing fine-grained analysis of the dataset to measure the extent to which
community smell influences code smell intensity, concluding that the presence of
community smell leads to a maintainability to be reduced. Palomba’s et al. [21]
study of codes and community smell inspired this experiment to further investigate
community smell and the extent to which community smell contributes to change
prediction.

2.2. Significance of Class Change Forecasts and Influencing Factors

Software class change is a continuous change in the class level of the software due
to the changing demand of the software users and the modifications made to the
software system by the developers. Lehman’s et al. [22] research points out that
although software changes cannot be avoided, the prediction of changes allows soft-
ware changes to be controlled by the developer. Predicting classes in a software
system that have a propensity to change is critical for developers, in that software
class change prediction can alert developers to when to refactor code and developers
can plan preventive maintenance operations to reduce change costs before software
class changes.

The change-prone classes are those classes in a software system that have a
tendency to change, and research has demonstrated that factors that influence the
occurrence of change in classes include design patterns, software size, code smell,
class size and coupling metrics. Penta et al. [23] first investigated the relationship be-
tween design patterns and change-prone classes in software systems and found that
classes designed by applying the three design patterns ADAPTER, ABSTRACT
FACTORY and COMMAND in software systems were more prone to change com-
pared to other classes.

In addition, Posnett et al. [24] showed by analysing the effect of pattern roles on
propensity to change that software size appears to have a more significant impact
than design patterns in changes to software systems. On the other hand, Khomh
et al. [7] investigated how poor design patterns, prior to software development, in-
fluenced class change and bug propensity. Their study showed that classes with
off-flavours are more susceptible to changes and bugs than other classes. In addi-
tion, systems that contain a lot of off-flavours may be more prone to change, on the
other hand Kim et al. [4] pointed out that refactoring is a key activity to reduce
the tendency of classes to change. Lindvall et al. [25] found that class size affects
the propensity for class change and noted that developers tend to make more im-
provements to large classes during maintenance and evolution. Finally, Kavitha et
al. [26] showed that the coupling metric is a relevant metric for estimating source
code variability.
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2.3. Class Change Prediction Methods

Within the system of knowledge of change prediction techniques, structural and
process metrics provide a good description of the propensity of software system
components to change. Specifically, Romano et al. [27] relied on code metrics to
predict the change-prone so-called fat interfaces, i.e. Java interfaces with poor co-
hesion, while Eski et al. [28] proposed a model based on CK and QMOOD metrics
to predict classes with a propensity to change. The potential usefulness of process
metrics for change prediction is reported by Elish et al. [29], who defined a set of
evolutionary metrics that describe the historical characteristics of software classes,
for example, they defined metrics such as the date of birth of a class or the total
number of class changes applied in the past. The results of Elish et al. [29] show
that a predictive model based on process metrics can predict change classes in terms
of class evolution. Girba et al. [30] make suggestions for subsequent code elements
that have a propensity to change by summarising information from previous change
histories. In a small-scale empirical study involving two systems, they observed that
prior changes were effective in predicting future modifications.

Catolino et al. [3] empirically assessed the role of developer-related factors in
change prediction. They investigated the performance of three developer-based pre-
diction models that rely on (1) the entropy of the development process , (2) the
number of developers working on a class as proposed by Bell et al. [31] and (3) the
changing structure and semantic dispersion proposed by Nucci et al. [16], which
showed that they can be more accurate than models based on structural or process
metrics. In a recent study, Catolino et al. [10] added a metric indicating code smell
intensity to a change prediction model and compared it with the anti-pattern and
code smell metrics, which indicated that the code smell intensity metric is a good
metric for change prediction.

Given that suboptimal organizational patterns and poor communication among
developers can have an impact on software quality, we integrated community smell
to the change prediction model to explore the impact of community smell on model
performance.

3. Construction of Change Prediction Models

By combining structural, process, and developer-related metrics, the software class
change prediction model identifies change-prone classes in software systems. Based
on previous work, we integrate community smell as a feature metric in our software
class change-prone prediction model, as shown in Figure 1.

3.1. Dataset Selection

The dataset we used is based on the JAVA open-source project dataset used in
Catolino’s [10] study. Some of the projects in Catolino’s [10] dataset are early ver-
sions of projects completed between 2000 and 2008. Because there is insufficient
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Fig. 1. Change prediction models built using community smells

history of collaboration and communication between developers, the tool for ex-
tracting community smell fails to extract community smell in these projects. We
chose some of these items after selection, and the dataset presently contains 16 ver-
sions of seven items. Table 2 reports more details on the names of the projects used
in the experiment, the number of releases for each projects, the number of smells
and the number of change-prone classes.

Table 2. Characteristics of the software project in the dataset

System Releases Classes Change-Prone Class Community Smell Classes

Apache Ant 4 124-350 29-93 5-32
Apache Log4j 2 104-194 24-56 3-5
Apache ivy 1 352 97 15
Apache Lucene 3 186-330 46-88 3-14
Apache Synapse 1 251 64 14
Apache Velocity 2 214-229 58 4
Apache Xerces 3 331-452 77-122 40-52
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3.2. Feature Selection and Dataset Construction

To explore whether community smell performs well in change prediction models,
we select three baseline models based on structural, process, and developer-related
metrics, all of which have been demonstrated to be excellent models for change
prediction in prior reserch. Furthermore, the best performing code smell intensity
and anti-pattern metric from the current study results are chosen for comparison,
in order to further investigate the amount to which community smell contributes
to change prediction. The model metrics were extracted as shown in Figure 2.

Fig. 2. Extracting features of change prediction models

3.2.1. Baseline Model Selection

1. Models based on structural metrics
The change prediction model based on structural metrics was originally pro-

posed by Zhou et al. [32] The model reveals the robustness of project development
by calculating the structural properties of the project source code. Metrics in-
cluding code cohesion and coupling, responsiveness to classes, and inheritance
metrics are all part of the source code structure property metric. We use a publi-
cally available tool developed by Spinellis et al. [33], which has been widely used
and empirically demonstrated to be reliable by many researchers, to extract
structural metrics of code classes in software systems. The model constructed
using the structural metric is denoted as SM in the experimental results, i.e. the
structural model.

2. Models based on process metrics
The study by Elish et al. [29] proposes an Evolution Model (EM) model that

extracts metrics for different aspects of class evolution, such as metrics like the
density of changes to the class. The study by Elish et al. [29] suggests that a
class that has experienced more changes in the past, this class will experience
more changes than other classes afterwards, and the EM model directly uses the
number of previous changes to the class to predict the propensity of the class to
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change in the future. The metric employed in this model differs from Hassan’s
[34] entropy metric since it does not filter for the sort of changes made to the
class as well as does not focus on software development difficulty. To calculate
these metrics, we use the tool developed by Catolino et al. [3] et al. We removed
some of the metrics since a significant degree of correlation between them would
impair the model’s accuracy. The model constructed using the process metric is
denoted as PM in the experimental results, i.e. the process model.

3. Models based on developer-related metrics
In a previous study, Catolino et al. [3] added developer-related metrics to a

class change prediction model and achieved significant effectiveness. Developer-
related metrics reveal how developers work on modifications in software changes
and the complexity of the development process. The Developer-based change
prediction model(DCBM) designed by Nucci et al. [16] has been confirmed to be
the most effective approach in change prediction, which uses the structural and
semantic dispersion of developers working on code components within a given
time period α as predictors. The scattering metric for each class c is calculated
according to Eq.(1) and (2), where developersc,α denotes the set of developers
for class c within a time period, with StrScatc,α and SemScatc,α denotint the
structural and semantic scattering of developer d within the time period α.

StrScatPredc,α =
∑

d∈developersc,α

StrScatd,α (1)

SemScatPredc,α =
∑

d∈developersc,α

SemScatd,α (2)

Given a set of developers changing classes over a period of time α, the CHd,α

developer’s structure dispersion is calculated as shown in Eq. (3), where the
’dist’ function returns the number of packages to be traversed from class ci to
class cj , calculated by using the shortest path algorithm on a graph representing
the structure of the system packages. The higher the measurement, the higher
the developer scatter value, i.e. the more changes a developer makes in different
packages in a given period of time, the higher the structure scatter value will be.

StrScatc,α = |CHd,α| ×
1

average∀ci,cj∈CHd,α
[dist(ci, cj)]

(3)

The semantic dispersion of developers based on the textual similarity of de-
velopers changing classes in time period α is shown in Eq. (4), where the ”sim”
function returns the textual similarity between classes ci to cj in the system,
which is measured according to the vector space model (VSM) [35].

SemScatc,α = |CHd,α| ×
1

average∀ci,cj∈CHd,α
[sim(ci, cj)]

(4)

The model constructed using the developer-related metric is denoted as the
DCBM in the experimental results, i. e. the developer model.
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Given that the model’s performance suffers when two or more metrics are sig-
nificantly correlated, we performed a feature selection of the metrics utilized in the
model and excluded some of the metrics with high covariance. Tables 3 illustrate
the final metrics incorporated in each model.

Table 3. Metrics and descriptions used in the baseline model

Baseline Model Indicators Description Deleted Metrics

Structural Model
(SM)

wmc, dit, noc, cbo,
ce, npm, lcom3,
loc, dam, moa, mfa,
cam, ic, cbm, amc,
avg_cc

Source code structure proper-
ties such as lines of code, co-
hesive coupling, class inheri-
tance metric, etc.

rfc, lcom, ca,
max_cc

Process Model
(PM)

boc, frch, wcd, tach,
lca, csb, cho

Different aspects of the evo-
lution of a class such as fre-
quency of change or date of
birth of the class

fch, lch, wfr, ataf,
chd, lcd, csbs,
acdf

Developer-Related
Model
(DCBM)

fi.change, ostrand,
scattering

Number of developers, struc-
tural, and semantic disper-
sion, and change complexity

None

3.2.2. Selection of Smell-Related Metrics

Community smell reveals suboptimal organizational structures and poor communi-
cation patterns in software development communities. To extract community smells
from open-source projects, we use publicly available tool CodeFace4Smell developed
by Tamburri et al. [36], which generates collaboration and communication graphs
between software project developers via email lists and source code repositories.
Palomba et al. [37] used the CodeFace4Smell tool to extract community smells in
the development community, meanwhile interviewing developers if they noticed the
presence of community smells to test the tool’s dependability. The tool’s depend-
ability is determined by comparing the outcomes of the two studies, thus we believe
that applying the CodeFace4Smell tool to extract community smells in projects is
accurate and dependable. According to the study in section 2.1 of the paper, we use
the tool to extract O.Silo(Organizational Silo), RS(Radio Silence), and ML(Missing
Links) three community smells.

Code smell intensity indicates the severity of code smell in a software project,
and this experiment uses JCODEODOR, an automated detection tool developed
by Fontana et al. [38] to calculate the intensity metric, the reliability of which
was confirmed in a study by Palomba et al. [39] The six code smells calculation
software items in Table 4 were selected for this experiment to calculate the code
smell intensity.

Anti-patterns are a reoccurring bad design problem in software projects that
explain that developers design classes poorly in software projects. Although the
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Table 4. Calculates the selected code smell for code smell intensity

Code Smells Acronym Description

Gold Class GC A poorly cohesive class that implements different re-
sponsibilities.

Class Data Should be Private CDP CDP occurs when a class has more than 10 public
variables, it is considered to be involved in CDP smell.

Complex Class CC If the McCabe Cyclomatic Complexity of a class is
above 200, the class is considered to be involved in
CC smell.

Functional Decomposition FD FD may occur when a class is intended to be object-
oriented and implemented by non-object-oriented de-
velopers.

Spagheeti Code SC SC may occur when a class is implemented in the way
of procedural thinking.

Long Method LM If a class has one or more methods with more than
100 lines and more than two input parameters, it is
considered to be involved in LM smell.

presence of anti-patterns in a software project does not preclude it from operating,
they indicate design flaws. In our project, we employ the DECOR approach de-
scribed by Moha et al. [40], which has been proved to obtain 100% Recall in Moha’s
[40] study, therefore we consider the application of this method for detecting anti-
patterns to be reliable.

3.2.3. Calculation of Software Class Changes

We refers to experimental studies by Catolino et al. [10], Elish et al. [29], and
Zhou et al. [32] who used an within-project strategy, i.e. counting changes in classes
across multiple releases of the project. Romano et al. [27] proposed that a class
is considered change-prone if the number of changes it undergoes in a given time
period Tw is higher than the median number of changes experienced by all classes
in the system.

In addition to this, we ran the tool CHANGEDISTILLER proposed by Fluri
et al. [41] for each project, which extracts the fine granularity of code changes
between ci to c(i+1) in a tree difference algorithm. CHANGEDISTILLER recognises
renaming operations and can recognise when classes have been modified during the
change history and therefore does not bias the correct calculation of the number of
changes. Given that the model’s performance suffers when two or more metrics are
significantly correlated, we performed a feature selection of the metrics utilized in
the model and excluded some of the metrics with high covariance. Tables 5 illustrates
specific information about the community smell metric and the two other code smell
intensity metrics and anti-pattern metrics used for comparison
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Table 5. Description and acronym of smell-related metrics

Metrics Indicators Description Deleted Metrics

Community Smell
(Comm)

Org.silo, Radio
Silence, Missing
Links

Suboptimal organization and
poor interaction among devel-
opers

None

Code Smell Intensity
(CodeInt)

intensity The severity of the code smell None

Anti-Pattern
(Anti)

ana, acm, arl,
acpd

Poor design patterns in soft-
ware development

None

3.2.4. Classifier Selection and Validation

Different machine learning classifiers have been proposed in previous studies to
distinguish change-prone and non-change-prone classes. Romano et al. [28] used
Support Vector Machines in his study, while Tsantalis et al. [42] used Logistic Re-
gression. Based on previous results, no researcher has explicitly stated which ma-
chine learning algorithm showed the best performance in change prediction. For this
reason, we utilised each of the six machine learning algorithms in Table 6 - Decision
Tree, Naive Bayes, Random Forest, Logistic Regression, Multilayer Perceptron and
Support Vector Machine - to train and test the models.

Table 6. Machine learning algorithm name and acronyms

Algorithms Acronyms Algorithms Acronym

Random Forest RF Naive Bayes NB
Logistic Regression LR Decision Tree ADT
Support Vector Machine SVM Multilayer Perceptron MLP

During the performance validation of the prediction model, we employ ten rep-
etitions of the 10-fold cross-validation approach as the validation strategy to assure
the reliability of the research results. The approach can partition the Dataset into
10 randomly sized copies for each item being assessed, with nine copies serving as
the training set and one serving as the test set. The procedure is performed ten
times, each time with a different test set, before the results of the ten tests are
averaged to confirm the experiment’s dependability.

3.2.5. Building the Model

Eight change-prone class prediction models are constructed: a baseline model using
each of the three structural, process, and developer-related metrics, three combi-
nation models using a combination of community smell, code smell intensity, and
anti-pattern with the baseline model, another three models using two of the three
smell metrics with the baseline, and a final model using a combination of the three
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smell metrics with the baseline. Table 7 demonstrates the eight models we have
constructed.

Table 7. All change prediction models used in the research

Models Metrics Included in the Model

Baseline SM [32], PM [3], DCBM [16]
Base+Comm Baseline, Community Smell
Base+CodeInt Baseline, Code Intensity
Base+Anti Baseline, Anti
Base+Comm+CodeInt Baseline, Community Smell, Code Intensity
Base+Comm+Anti Baseline, Community Smell, Anti
Base+CodeInt +Anti Baseline, Code Intensity, Anti
Base+Comm+CodeInt+Anti Baseline, Community Smell, Code Intensity, Anti

3.3. Evaluation Metrics

In order to measure and evaluate the performance of the model, we use Precision,
Recall, F-Measure and AUC-ROC to evaluate the model. Eq. (5) and (6) are the
Precision and Recall calculated from the confusion matrix of the predicted results.

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

Where TP is the number of true positives, TN is the number of true negatives
and FP is the number of false positives. In order to have a unique value to repre-
sent how good the model is, Eq. (7) calculates F-Measure, the harmonic mean of
Precision and Recall.

F −Measure = 2× Precision×Recall

Precision+Recall
(7)

In addition, we considers another metric: the area under the characteristic op-
erating curve, ROC, which is a graph showing the performance of the classification
model at all classification thresholds, and AUC, which measures the entire two-
dimensional area below the entire ROC curve. This metric quantifies the overall
ability of the change prediction model to distinguish between change-prone and
non-change-prone classes, and can quantify the robustness of the model in distin-
guishing between the two binary classes.

4. Results and Discussion

We evaluate the effectiveness of metrics measuring development process complex-
ity for predicting classes of variability in software systems, with the purpose of
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improving resource allocation in preventive software system maintenance activities
by focusing on classes of variability to reduce the cost of change. To this end, we
propose the following questions.

• Q1: Does community smell improve the performance of baseline models?
• Q2: What is the importance of community smell as a feature in different baseline

models?
• Q3: What is the performance of change prediction models for combinations of

smell-related information?

Q1 aims to investigate the contribution of community smell to the performance
of three baseline change prediction models constructed based on structural, pro-
cess and developer-related metrics. In Q2, we compare the importance of the three
community smell characteristics in change prediction models constructed using dif-
ferent baselines. Q3 assesses the combined ability to use smell-related information
in change prediction.

In this section, we respond to the proposed Q1, Q2, and Q3 by giving the
experimental findings of the change prediction models associated with each question
in terms of Precision, Recall, F-Measure, and AUC-ROC. Six machine learning
methods are employed to train and validate each model in order to evaluate its
performance, and the final test results show that MLP works best. We only show
the experimental results obtained by the best performing MLP.

4.1. Q1: Does community smell improve the performance of baseline models?

We start with training tests of the change prediction models using the three base-
line models and community smell, and Table 8 depicts the performance of the
change prediction models with community smell added to three of the baseline
models, SM(Structural Model), PM(Process Podel) and DCBM(Developer-Related
Metrics).

Table 8. Baseline and Base+Comm model performance

Models Precision Recall F-Measure AUC-ROC

SM 0.761 0.801 0.734 0.795
SM+Comm 0.760 0.794 0.7530.7530.753 0.797
PM 0.753 0.793 0.744 0.774
PM+Comm 0.7740.7740.774 0.8030.8030.803 0.7540.7540.754 0.7890.7890.789
DCBM 0.651 0.670 0.636 0.713
DCBM+Comm 0.646 0.6780.6780.678 0.6430.6430.643 0.713

As shown in the experimental results, community smell improved the perfor-
mance of the SM baseline model by 1.9% in terms of F-Measure and 0.2% in terms
of AUC-ROC, improved the performance of the PM baseline model by 2.1%, 1%, 1%,
and 1.5% in terms of Precision, Recall, F-Measure and AUC-ROC, while improving
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the performance of the DCBM baseline model in terms of Recall and F-Measure by
0.8%, and 0.7%. In general, the performance of the models is improved by adding
community smell to the three baseline models, with community smell contributing
more to PM than SM and DCBM. The experimental results did not observe a sig-
nificant contribution of community smell to the performance of the baseline model.
It is speculated that the ratio of the classes containing community smell to the
total class in the dataset is too low. After statistical analysis of the data set, it was
found that 5% of the classes contained at least one community smell, the proportion
of the change-prone class was 26%, and the proportion of the change-prone class
containing the community smell in the data set was only 1%.

Afterwards, we considers that there is a difference in performance between the
models constructed by applying different machine learning algorithms in the ex-
periment, and since the models constructed using the process metric outperform
the other metrics, Table 9 gives the model performance for PM and PM+Comm
constructed using different algorithms.

Table 9. Performance of models build by different algorithms

Models Evaluation Metrics RF ADT NB LR MLP SVM

PM

Precision 0.742 0.697 0.619 0.539 0.753 0.811
Recall 0.818 0.745 0.642 0.566 0.793 0.890
F-Measure 0.747 0.702 0.620 0.539 0.744 0.810
AUC-ROC 0.789 0.682 0.648 0.559 0.774 0.862

PM+Comm

Precision 0.732 0.677 0.554 0.5610.5610.561 0.7740.7740.774 0.763
Recall 0.802 0.712 0.9570.9570.957 0.5990.5990.599 0.8030.8030.803 0.849
F-Measure 0.728 0.680 0.6640.6640.664 0.5680.5680.568 0.7540.7540.754 0.762
AUC-ROC 0.7980.7980.798 0.670 0.6530.6530.653 0.5740.5740.574 0.7890.7890.789 0.814

The experimental results show that comparing the training results of six machine
learning algorithms on the model, both SVM and MLP performed the best, with LR
being the least effective. The results of the models constructed using NB showed
that community smell improved PM’s model performance by 31.5% in terms of
Recall and 4.4% in terms of F-Measure.

4.2. Q2: What is the importance of community smell as a feature in different
baseline models?

To further observe the impact of community smells on the change prediction models,
this experiment evaluated the importance of the selected three community smells in
the selected change prediction models constructed using different baseline models in
Q2 and ranked the importance of the community smells. The characteristic impor-
tance of the three community smells in the change prediction models constructed
using the structural metric, the process metric and the developer-related metric,
respectively, is presented in Table 10 and the three community smells are ranked
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in terms of strong, medium and weak.

Table 10. Feature importance of community smell in different baseline models

Models Importance of features
Strong Medium Weak

SM+Comm ML(0.016) RS(0.014) O.Silo(0.003)
PM+Comm RS(0.017) ML(0.008) O.Silo(0.004)
DCBM+Comm RS(0.041) ML(0.039) O.Silo(0.027)

This experiment quantifies the gain provided by three community smells to
different baseline models by means of the information gain method, an algorithm
that ranks model features according to their ability to predict the propensity for
class change. The information gain method was calculated as shown in Eq. (8) as
follows.

Gain (D, a) = Ent (D)−
V∑

v=1

|Dv|
|D|

Ent (Dv) (8)

This formula represents the information gain Gain(D,α) obtained by dividing
the Dataset D by the feature a. Assuming that the proportion of the kth class
samples in the dataset D is pk, the information entropy of the Dataset D is Ent(D)

as shown in Eqs. (9) as follows.

Ent (D) = −
|y|∑
k=1

pk log2 pk (9)

The experimental results show that O. Silo(Organizational Silo) provides the
weakest information gain across the different baseline models and that this smell
indicates the presence of isolated areas of non-communication in the development
community. For change prediction models constructed using structural metrics,
ML(Missing Links) have the strongest feature importance, i.e. the lack of communi-
cation between developers have a higher degree of impact on class change prediction
than the two smells O. Silo and RS(Radio Silence). When the change prediction
models were constructed using both process metrics and developer-related metrics,
RS showed strong feature importance, and RS showed higher feature importance in
the change prediction models constructed using developer-related metrics than in
the change prediction models constructed using structural metrics. Overall, in the
software class-level change prediction model, community smell plays a significant
role in software class change prediction by representing the suboptimal organiza-
tional model of the development community, with O.Silo having a weaker impact
than ML and RS.
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4.3. Q3: What is the performance of change prediction models for
combinations of smell-related information?

In Q3 we aimed to verify whether a combination of smell metrics would improve the
performance of the baseline model and to compare the difference in performance
between change prediction models constructed using multiple smell-related informa-
tion. The experimental results are presented in Table 11 where the performance of
the combined smell on the three baseline models SM, PM, and DCBM are presented
and compared to the performance of the baseline models.

Table 11. Performances of models build by using combinations of smell-related information

Models Precision Recall F-Measure AUC-ROC

SM 0.761 0.801 0.734 0.795
SM+Anti+Comm 0.794 0.864 0.790 0.807
SM+CodeInt+Comm 0.757 0.803 0.765 0.810
SM+CodeInt+Anti+Comm 0.8070.8070.807 0.8640.8640.864 0.7940.7940.794 0.8190.8190.819
PM 0.753 0.793 0.744 0.774
PM+Anti+Comm 0.8110.8110.811 0.855 0.7970.7970.797 0.826
PM+CodeInt+Comm 0.769 0.818 0.778 0.787
PM+CodeInt+Anti+Comm 0.808 0.8590.8590.859 0.787 0.8270.8270.827
DCBM 0.651 0.670 0.636 0.713
DCBM+Anti+Comm 0.769 0.822 0.760 0.807
DCBM+CodeInt+Comm 0.667 0.686 0.656 0.731
DCBM+CodeInt+Anti+Comm 0.7810.7810.781 0.8320.8320.832 0.7800.7800.780 0.8110.8110.811

In terms of Precision, Recall, F-measure, and AUC-ROC, the SM+Anti+Comm
performed well when the SM was used for the baseline model. More specifi-
cally, performance of the SM was improved by 3.3%, 6.3%, 5.6%, and 1.2%. The
SM+CodeInt+Comm improved the performance of the baseline model in terms of
Recall, F-measure, and AUC-ROC by 0.2%, 3.1%, and 1.5% respectively, while
the SM+CodeInt+Anti+Comm improved the performance of the baseline model in
terms of the four metrics by 2.4% - 6.3%.

When the baseline model used process metrics, the performance of the PM
is improved in various magnitudes by different combinations of smell metrics for
all four metrics. The PM+Anti+Comm improved the performance of the PM by
5.8%, 6.2%, 5.3%, and 5.2% in terms of Precision, Recall, F-measure, and AUC-
ROC respectively, The performance of the PM+CodeInt+Anti+Comm improves
the performance of the PM by 4.3% to 6.6% in four metrics. Among all the models,
the model achieved the worst AUC-ROC value of 77.4%, while the best model was
the PM+CodeInt+Anti+Comm, which achieved a performance value of 82.7% in
terms of AUC-ROC.

When the baseline model used the DCBM, the change prediction model us-
ing the three combinations of smell-related information performed the best of all
models in terms of Precision, Recall, F-measure, and AUC-ROC, improving the
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performance of the DCBM by 13%, 16.2%, 14.4%, and 9.8% respectively. Perfor-
mance of the DCBM was also improved by 1.6%-2% in the four metrics, although
the DCBM+CodeInt+Comm showed the least improvement in performance.

Combining the experimental results of all the models, the community smell in
change prediction model proposed in this experiment greatly improves the perfor-
mance of the model. In particular, when the baseline model was constructed using
the process metric, the PM+ CodeInt+Anti+Comm performed best, with model
performance reaching 80.8%, 85.9%, 78.7%, and 82.7% in terms of Precision, Recall,
F-Measure, and AUC-ROC.

5. Threats to Validity

This section will address the threats that may affect the validity of this experimental
study in terms of structural validity, conclusion validity, and external validity.

The threat to structural validity is the reliability of the Dataset used in this
experiment. We select a part of the dataset items from Catolino’s [10] study from
which community smells can be extracted. The available Dataset contains 16 ver-
sions of dataset files from seven open-source projects, and this experimental study
was confirmed to be reliable in terms of the source of the Dataset. The extraction
tools used for the extraction of structural, process, and developer-related metrics
as well as smell-related information have been tested and proven reliable by several
researchers. For the use of the metric extraction tools, the guidelines for installation,
configuration, and use of the tools were strictly followed.

The threat to conclusion validity is the result of model training and validation.
This experiment used Precision, F-Measure, Recall, and AUC-ROC metrics to eval-
uate model performance for all class change prediction models, which are widely
used to assess the performance of classification models. When validating the model,
this experiment used a tri-fold cross-validation method with 10 replications, with
the Dataset being randomised before each replication to avoid data order bias.

The threat of external validity is related to the generalisation of results. The
projects considered in this experiment differ in terms of application area, sizes, and
number of classes. The projects considered in this experiment differ in terms of
application area, sizes, and number of classes. The construction of change predic-
tion models covers a wide range of metrics in use, with structural metrics, process
metrics, and developer-related metrics revealing different aspects of the software
project’s characteristics.

6. Conclusion

Software changes was an essential part of the development of a software system and
it was vital for developers to identify in advance the code modules in the software
system that has a higher propensity to change. Based on prior work of Palomba
et al. [8] and Catolino et al. [10], we focused on the impact of community smell in
change prediction models.
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Our research revealed that integrating community smell to the baseline model
improved the predictive performance of the model, when the baseline model was
built using the process metric, community smell improved the performance of the
change prediction model in terms of F-measure and Recall by 4.4% and 31.5%
respectively. The information gain provided to the model by O. Silo was weaker
than that provided by RS and ML in the three community smells used in this
experiment, while RS and ML provided different strengths of information gain in
different baseline models. The change prediction models constructed using the three
smell-related information performed well, achieving a highest AUC-ROC value of
82.7% in terms of model performance.

Future work includes: First, extending the scope of measured community smells
to explore the impact of more smells in change prediction; Second, extend the
dataset to include projects developed in other programming languages; And third,
contact developers on multiple projects by questionnaires to assess whether develop-
ers perceive the presence of change-prone classes to further explore the practicability
of our model.
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