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Abstract

Delivering reliable software under the constraint of limited time and
budget is a significant challenge. Recent progress in software defect pre-
diction is helping developers to locate defect-prone code components,
and allocate quality assurance resources more efficiently. However, prac-
titioners’ criticisms on defect predictors from academia are not practical
since they rely heavily on size metrics such as Lines-Of-Code (LOC),
which over-abstracts technical details and provides limited insights for
software maintenance. Thus, the performance of predictors may be
overclaimed. In response, based on a state-of-the-art defect prediction
model, we (1) exclude size metrics and evaluate the impact on perfor-
mance, (2) include new features such as network dependency metrics,
and (3) explore which ones are better alternatives to size metrics using
eXplainable Artificial Intelligence (XAI) technique. We find that ex-
cluding size metrics decreases model performance by 1.99% and 0.66%
on AUC-ROC in within- and cross-project prediction respectively. The
results show that two involved network dependence metrics (i.e., Be-
tweenness and pWeakC(out)) and four other code metrics (i.e., LCOM,
AVG(CC), LCOM3 and CAM) could effectively preserve or improve
the prediction performance, even if we exclude size metrics. In conclu-
sion, we suggest discarding size metrics and involving the up-mentioned
network dependency metrics for better performance and explainability.
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1 Introduction

Development of software has to meet certain quality standards within
the constraint of time and budget. In recent years, software projects have
become more complex and their development iterations are accelerated, caus-
ing a dramatic increase in maintenance costs [Reddivari and Raman, 2019].
Thus, practitioners need to allocate limited software quality assurance re-
sources to defect-prone code components [Wan et al., 2020]. Software defect
prediction techniques are introduced to automatically help locate, understand
[Tantithamthavorn and Jiarpakdee, 2021], or even eliminate [Li et al., 2018]
software defects. Since defect predictors have achieved ideal performance,
researchers believe such models could be beneficial for software quality
[Rajapaksha et al., 2022], if they are integrated into the development cycle
properly.

However, software defect prediction models have been found to
lack trust among practitioners, as reported by Papenmeier et al.
[Papenmeier et al., 2022]. Previous studies, such as the work of Weyuker and
Ostrand, attempted to investigate potential reasons for this lack of trust,
including data privacy concerns [Weyuker and Ostrand, 2010]. Furthermore,
the effectiveness of accurate defect prediction models in enhancing software
testing efficacy remains a crucial question, as emphasized by Bell et al.
[Bell et al., 2011]. In response to these challenges, federated learning (FL) has
emerged as a promising solution. Wang et al. [Wang et al., 2022] stated that
FL facilitates the training and building of models without exposing data pri-
vacy, enabling clients to train their models with local dataset and jointly builds
a global model by transferring models’ parameters to the server. Additionally,
studies explored effort-aware ranked software modules according to defect den-
sity, which helps allocate testing resources more effectively, as shown by Rao
et al. [Rao et al., 2021].

Recently, Antinyan from Volvo Car Group [Antinyan., 2021] criticized that
defect prediction models were hypnotized by Lines-Of-Code (LOC) metric.
The author believed such metrics over-abstracts technical details and provided
limited insights for quality assurance. This study indicated that current models
lack reliability and user acceptance, necessitating further elucidation on the
role of size metrics in determining the final decision. Although size metrics
are powerful for boosting performance, which aspects hidden behind LOC are
unable to understand [Alpernas et al., 2020]. Moreover, such metrics could be
manipulated by slightly modifying source codes, making the model less robust
and reliable, e.g., by applying the T1: AddDeadCode transformation in the
study [Henkel et al., 2022]. Indeed, oversized code indicates bad design which
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may lead to buggy code. Zhang et al. [Zhang et al., 2017] found that excessive
numbers of calls to other modules and lines of code are related to defect-
proneness. However, oversize is not always a valid signal of defect, since Koru
[Koru et al., 2009] found that different from the general belief that the value of
size metrics and the emergence of defects are correlated, their study indicated
that smaller modules also deserve more attention. Thus, from the perspective
of practitioners, the involvement of size metrics is questionable.

The challenge has been met with a promising solution known as Ex-
plainable Artificial Intelligence (XAI). By generating feature importance for
each local prediction, XAI provides insights into how models make decisions,
by enhancing their interpretability [Cambria et al., 2023], and their outputs
were stable according to recent empirical studies [Jiarpakdee et al., 2022,
Yang et al., 2021b]. Unfortunately, such explanations could still be unreason-
able [Gao et al., 2022], thus they would hinder the trust of developers in
models. In contrast to the up-mentioned study that aimed to identify the
causes of defects, which is not the primary objective of a defect prediction
model, it is our conviction that the XAI outputs of such models should
align with the primary expectations of the practitioners who employ them
[Jiarpakdee et al., 2021b], i.e., it should explain why a code component is
defect-prone or not. In contrast to empirical findings indicating that XAI
outputs are deemed helpful by a substantial number of practitioners, our
investigation reveals that there is potential for further enhancement.

Responding to the call of “dehypnotizing” [Antinyan., 2021] defect predic-
tion models,we intend to cover the aspects that are measured by size metrics
using other metrics. By doing so, we seek to reveal the performance and model
behavior without the involvement of size metrics. Size metrics such as LOC
summarize various aspects of code components about development effort, com-
ponent importance, code structure (e.g., cohesion), code complexity, and so on.
We perform an empirical case study on the gold-standard PROMISE dataset
[Jureczko and Madeyski, 2010] that contains 30 open-source projects. First, we
exclude size metrics and evaluate the performance impact on both within- and
cross-project scenarios. Second, we preserve and introduce new metrics (e.g.,
network dependency metrics for code importance) related to the up-mentioned
aspects that size metrics may summarize. Third, we explore the alternatives
to size metrics using a model-agnostic XAI technique called SHAP (SHapley
Additive ExPlanations) based on the feature importance of metrics. In con-
clusion, we propose the alternatives to size metrics for more explainable defect
prediction.

The major contributions of our work are as follows.

(1) To the best of our knowledge, this is the first study to explore alternative
metrics to size metrics responding to the concerns of practitioners.

(2) We reveal the explainability and practicability of size metrics, as well as
the impact of removing them from models, to validate previous empirical
observations of the importance of size metrics.
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(3) We exploit SHAP to explain how and why certain metrics could be good
alternatives to size metrics, and we propose suggestions for researchers and
practitioners.

(4) Our experimental code and results have been shared in GitHub1 for
replication and further studies.

The remainder of this paper is organized as follows. Section 2 summa-
rizes related work in software defect prediction and XAI. Section 3 introduces
dataset construction. Section 4 proposes the research questions and research
methods, while Section 5 analyses and discusses the experimental results.
Section 6 outlines the threats to validity. Section 7 concludes this paper and
introduces future work.

2 Related work

2.1 Metrics used in defect prediction

Metrics used traditionally for defect prediction were generally classified as
code metrics and process metrics [Yang et al., 2021a].

2.1.1 Code metrics

Code metrics were primarily designed based on code size and complexity.
In early defect prediction studies, McCabe metrics and Halstead metrics were
used by researchers to predict defects [McCabe, 1976]. Since object-oriented
design had become a major programming principle in recent years, metrics
that capture characteristics such as inheritance and encapsulation have grown
in popularity. Chidamber et al. [Chidamber and Kemerer, 1994] proposed CK
metrics based on object-oriented development design and calculated metrics
such as WMC, DIT, NOC, CBO, RFC, and LCOM from the perspectives
of definition and evaluation. Jureczko et al. [Jureczko and Madeyski, 2010]
proposed a dataset called PROMISE consisting of 20 object-oriented metrics
and made it available online. This dataset has become the gold standard for
software defect prediction and is also used in our study.

2.1.2 Process metrics

Many studies had designed process metrics to predict software defects,
based one various characteristics of the software development process. These
metrics were commonly categorized into three groups [Yang et al., 2021a], (1)
code churns, (2) developer information and (3) the organization of the project
team. Code churns reflect the changes made to the program code by the de-
veloper over time. Nagappan [Nagappan and Ball, 2005] proposed the use of
relevant code churns to predict the defect density in a system and demon-
strated that the metrics achieve high accuracy. Qiao et al. [Yu et al., 2020]
introduced two new process metrics to predict defects based on the defect

1https://github.com/T-riple-C/code-SNA
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rate of historical software packages and the degree of class change. They con-
cluded that these metrics were better than those based on code churns and
traditional code metrics for defect prediction. For developer aspect, Weyuker
et al. [Weyuker et al., 2008] investigated the impact of the number of de-
velopers on defect prediction and showed that it did not significantly affect
performance. In addition, Nagappan et al. [Nagappan et al., 2008] explored
the influence of the team organizational structure on the tendency for defects
in the software development process, proposing eight metrics based on factors
such as organizational scale and group change. They found that using organi-
zational structure metrics for defect prediction had a higher contribution than
traditional code metrics and code churns.

2.1.3 SNA metrics

Understanding the structure and interconnections of software components
is crucial for ensuring the overall quality of software systems. In software engi-
neering, SNA (Social Network Analysis) can be used to analyze relationships
between developers and projects. Numerous studies had applied it to defect
prediction. Nguyen et al. emphasized the significance of dependency network
metrics in influencing post-release failure [Nguyen et al., 2010]. Zimmerman
et al. [Zimmermann and Nagappan, 2008] suggested that analyzing projects’
dependency network through network analysis can extract dependency re-
lationships and construct network dependency metrics. Results showed that
utilizing these metrics along with code metrics can enhances the effectiveness
of prediction models.

2.2 Empirical studies on quality of features and defect
dataset label

2.2.1 Quality of features used in defect prediction

Defect dataset often suffered from data class imbalance [Song et al., 2019]
and feature redundancy [Ghotra et al., 2017], which can negatively impact
prediction model performance. Defective and non-defective dataset were often
naturally imbalanced. In terms of data balancing, data class imbalance learning
algorithms could be classified into sampling-based methods, cost matrix-based
training data, stacking learning methods, and problem-specific ones. Song
et al. [Song et al., 2019] compared and analyzed the impact of the interac-
tions between class imbalance algorithms, classifiers, and metrics on defect
prediction. They concluded that dataset with a high degree of class imbal-
ance had a greater impact on the prediction results. They also suggested that
better results could be achieved by selecting appropriate class imbalance al-
gorithms for different classifiers. As for the problem of feature redundancy,
Jain et al. [Jain and Saha, 2021] combined stacking learning with a compar-
ative analysis of hybrid feature selection methods based on three types of
filters, wrappers, and embeddings. The results showed that the use of hy-
brid feature selection methods could improve model performance and stacking
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learning methods performed better than individual classifiers. Jiarpakdee et
al. [Jiarpakdee et al., 2018] proposed a feature selection method called Au-
toSpearman for the purpose of model interpretation. The results showed that
the method could produce a highly consistent subset of features and improve
model interpretability.

2.2.2 Quality of defect dataset label

In addition to the defect dataset itself, it is crucial to consider the quality
of defect dataset labeling. This factor plays a vital role in both the predictive
outcomes of the models and the acceptance of practitioners. Jurecako et al.
[Jureczko et al., 2019] provided an example of code changes commit, analyzed
the method that maps the defects to the code changes that resolve them, and
identified the status of the defects as uncertain. Meanwhile, labeling issues
caused by classical algorithms such as SZZ had been highlighted by numerous
studies. For a instance, a study [Herbold et al., 2022] showed that inaccura-
cies in defect labels produced by the SZZ algorithm can severely compromise
the effectiveness of the defect prediction. In our experiments, we utilize the
gold-standard dataset [Jureczko and Madeyski, 2010], which is one of the most
popular dataset has been extensively studied on defect prediction. Further-
more, the defect labels utilized in the study were gathered via a tool named
BugInfo, which underwent comprehensive functional testing, as indicated by
the original author.

2.3 XAI and its applications in software defect prediction

2.3.1 XAI in software engineering

The development of machine learning, particularly deep learning meth-
ods, has led to improved model performance. However, as models become
more complex, understanding their behavior and interpreting their results
has become more challenging. The comprehensibility and interpretability of
models, however, are crucial factors that can impact users’ trust and accep-
tance [Hoffman et al., 2018], which is why the demand for XAI technology
has surged in recent years. The goal of XAI is to make the black-box model
easier for users to comprehend and interpret [Burkart and Huber, 2021]. Mol-
nar et al. [Molnar, 2020] classified machine learning model interpretability
methods based on several criteria, i.e., model-specific and model-agnostic.
Model-specific interpretation methods are only applicable to specific models.
In the context of defect prediction, different interpretation methods are used
based on the prediction model. For instance, decision rules, decision results,
and feature weights can explain simple linear or Decision Tree models. Model-
agnostic interpretation methods, on the other hand, can be used to interpret
any machine learning model without being constrained by the interpretation
format or input data.
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2.3.2 Applications in software defect prediction

As previously mentioned, this section briefly introduces two different types
of XAI methods and their applications. For model-specific methods, Jiarpakdee
et al. [Jiarpakdee et al., 2021a] used Logistic Regression and Random For-
est to construct defect models. They employed the ANOVA method for the
Logistic Regression model and used the built-in GINI importance for the Ran-
dom Forest model. However, these model-specific interpretation methods are
not universal and may not be sufficient for interpreting individual predic-
tion results. Meanwhile, there is no certain way to interpret some complex
black-box models [Jiarpakdee et al., 2022]. A recent study [Yang et al., 2021b]
found that the feature importance generated by model-specific interpretation
methods could be unstable. They suggested the use of model-agnostic meth-
ods to generate model interpretations. For model-agnostic methods, Ribeiro
et al. [Ribeiro et al., 2016] proposed Local Interpretable Model-agnostic Ex-
planations (LIME), which is a local agent model that can be used to interpret
individual prediction instances of black-box machine learning models. Staniak
et al. [Staniak and Biecek, 2018] proposed BreakDown, which is designed to
decompose models into specific variables based on a greedy policy decompo-
sition model to predict specific variables in a partially attributable feature
space. Aleithan et al. [Aleithan, 2021] applied LIME and iBreakDown methods
to a commit granularity defect prediction model and found that the results of
these interpretation techniques for defect prediction were not consistent with
manual analysis. Lundberg et al. [Lundberg and Lee, 2017] proposed SHAP,
which interprets the results of local instances by calculating the contribution
of each feature to the predictions. Furthermore, the authors also provided the
treeSHAP [Lundberg and Lee, 2017] method for tree-based models to improve
computational speed. In our experiment, we utilized SHAP to interpret the
model’s prediction results and feature importance. It has been tested on defect
prediction and has produced stable results.

3 Dataset construction

In this section, we explain our motivation for finding alternatives to
size metrics, followed by an introduction to the projects and metrics of
experimental dataset.

3.1 The gold-standard dataset and code metrics

Our experiment is based on a gold-standard dataset provided by Jureczko et
al. [Jureczko and Madeyski, 2010], which also includes several object-oriented
metrics. Our experiments require the extraction of source code dependency,
thus we only consider the open-source projects. As demonstrated in Table 1,
we finally selected 30 versions from 11 projects.

The dataset used in this study contains 20 object-oriented metrics, as listed
in Table 2. The aim of this study requires the exclusion of size metrics. Thus we
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Table 1 Experimental projects

Project Version Defect Rate Project Version Defect Rate

Ant 1.4 15.09% Ivy 2.0 8.39%
1.5 7.98% Poi 1.5 47%
1.6 17.59% 2.0 9.59%
1.7 15.57% 2.5 53.22%

JEdit 3.2.1 17.71% 3.0 52.92%
4.0 12.38% Tomcat 6.0.39 6.63%
4.1 12.27% Velocity 1.4 65.63%
4.2 5.96% 1.5 57.72%

Log4j 1.0.4 22.22% 1.6.1 29.89%
Lucene 2.0 31.60% Xalan 2.4.0 12.76%

2.2 37.80% 2.5.0 40.95%
2.4 37.87% 2.6.0 35.13%

Synapse 1.0 9.88% Xerces 1.2.0 13.79%
1.1 26.09% 1.3.0 12.66%
1.2 31.97% 1.4.4 65.13%

should propose a protocol to identify size metrics firstly. We exclude a metric if
it is (1) used to measure the size of a code component according to their names,
i.e., LOC, NOC, and NPM, and (2) fitted with the definition of size met-
rics according to the metric classification framework of [Azeem et al., 2019],
i.e., MOA and AMC. To clarify, the name of some metrics may not be re-
lated with code size that they actually measure. More specifically, MOA is
calculated by the count of the number of class fields whose types are user
defined classes, and AMC measures the average method size for each class
[Jureczko and Madeyski, 2010]. Consequently, the set of size metrics identified
in our study involves five metrics, called LOC, AMC, NPM, NOC, and MOA.

Table 2 Code metrics

Metrics Definition Code Metrics Definition

WMC
Weighted methods
per class

LOC Lines of code

DIT Depth of inheritance DAM Data access metric
NOC Number of children MOA Measure of aggregation

CBO
Coupling between
object classes

MFA Measure of Functional Abstraction

RFC
Response for a class CAM Cohesion among

methods of class

LCOM
Lack of cohesion
in methods

LCOM31 Lack of cohesion
in methods

CA Afferent couplings CBM Coupling between methods
CE Efferent couplings AMC Average method complexity

NPM
Number of
public methods

MAX(CC) The greatest value of
McCabe’s cyclomatic complexity

IC
Inheritance coupling AVG(CC) The greatest value of

McCabe’s cyclomatic complexity

1Refers to LCOM3 suggested by Henderson-Sellers.
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3.2 Potential alternatives to size metrics

Since size metrics’ involvement in defect prediction models is questionable
and they are not preferred by practitioners, we intend to explore whether
and which alternative metrics can replace size metrics while not hindering
performance.

Table 3 Aspects measured by non-size metrics from the PROMISE dataset

Aspect Metrics

Effort ?
Importance ?
Code Structure (Cohesion) LCOM, LCOM3, CAM
Code Structure (Coupling) CBO, CA, CE, IC, CBM, RFC, DAM
Inheritance Complexity DIT, IC, WMC
Code Complexity MFA, MAX(CC), AVG(CC)

Apart from code size, size metrics (e.g., LOC) are often applied to
measure various aspects of code component features including (1) ef-
fort of development [Yu et al., 2019, Alpernas et al., 2020], (2) code struc-
ture [Alpernas et al., 2020, Jureczko and Madeyski, 2010], (3) complexity
[Alpernas et al., 2020], and (4) importance of code components, i.e., inter-
actions with other components [Alpernas et al., 2020]. Table 3 classifies the
non-size metrics extracted from Table 2 which also concern these aspects. In
terms of effort, classes with large LOC may be relatively important and may
represent more effort put into the code by the developer. In terms of structure,
the quality of the code itself has been captured by object-oriented metrics such
as cohesion and coupling. In terms of complexity, for example, the number of
functions in the source code can stand in for it [Oram and Wilson, 2011]. In
terms of components’ importance, e.g. interactions with different components
reflect it to some extent.

From Table 3, we can find that if size metrics are excluded, impor-
tance and effort metrics are missing from the dataset. Apart from LOC
[Yu et al., 2019], effort measures rely on version control system statistics
within a long range of time [Alpernas et al., 2020], which are not applicable
to our dataset. Thus, the importance of code components are focused. We in-
troduce network dependency metrics, which can capture the characteristics
(e.g., centrality, weight) of nodes (i.e., code components) according to the de-
pendencies between software modules. Dependency networks are graphs whose
nodes are software modules and edges are dependencies between these mod-
ules [Gong et al., 2022]. The network dependency metrics could be calculated
based on a network of code dependencies by social network analysis (SNA)
[Zimmermann and Nagappan, 2008]. Several studies indicated that combining
the SNA and the code metrics can improve the performance of the defect pre-
diction model [Nguyen et al., 2010], while other sources argued that the SNA
metrics are only effective in certain scenarios [Premraj, 2011]. Although the
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conclusions of various studies on the utility of dependency network metrics
for defect prediction are inconsistent, under the condition that we need extra
metrics to make up for the lost information from excluding size metrics. This
study focus on exploring their potential of replacing their functionalities of
representing code component importance.

3.3 The introduced SNA metrics

In our study, we focus on binaries of individual projects [Shin et al., 2012]
as well as SNA metrics that are obtained by applying the SNA methods to
extract information on dependency networks of software projects.

In the analysis of social networks, there are mainly two perspectives, i.e.,
the global network and the ego network [Ma et al., 2016]. The global network
involves the entire dependency graph and allows for a measure of the impor-
tance of the nodes in the entire software system. The ego network is usually
composed of a node and its neighbor nodes. For the global network, our ex-
periment focuses on two important features, i.e. structural holes and centrality
[Jun, 2014]. Structural holes index generally takes effective size, efficiency, con-
straint, hierarchy and so on into consideration. For centrality, we involve four
standard measures described as Table 4. In the ego network, for each node,
there are three types of ego network, in, out, and undirected. The in (out) ego
network only cares about the in (out) directed dependence between the ego
node and its neighboring nodes. The undirected ego network contains the de-
pendencies of both directions. Ego network basic measures calculated include
size, ties, pairs, density, average distance, diameter, weak component, reach,
broker and so on. Our experiment involves 9 SNA metrics in the global network
and 24 SNA metrics in the ego network.

The process of extracting and calculating SNA metrics is as follows. First,
we retrieve source code from their relative open-source version control sys-
tems according to the project information provided by the dataset. Second,
we extract the dependency information of the source code by exploiting a tool
called Understand2. The experiment employed version 5.1 of the tool, which
has been purposefully developed for source code analysis and tracking. It en-
ables developers to explore system architecture and design, comprehend the
interconnections between various code components and evaluate the complex-
ity of the code. We extract the dependency network for each version of each
project. Third, we calculate SNA metrics for each node in terms of both the
ego network and global network by using a tool named Ucinet3. This research
employ Ucinet 6.5.0 for conducting social network analysis, which is a tool
widely used in the social sciences. Moreover, it can also be applied to relational
analysis of software systems. It is utilized in the study to analyze the outcomes
from the Understand and extract relevant SNA metrics to support the experi-
ment. Finally, we integrate the acquired SNA metrics into the original dataset.
The SNA metrics involved are displayed in Table 4. To be consistent with the

2https://scitools.com/
3https://sites.google.com/site/ucinetsoftware/home
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granularity of the original dataset, we extract class-level dependency relation-
ships. In Table 4, the first column shows the two perspectives of networks,
and the second column means different indicators in the dependency networks.
Moreover, the third column displays the SNA metrics involved in our study.

Table 4 SNA metrics

Type Indicators Metrics

EN

In Size, Ties, Pairs, Density, AvgDist, Diameter, nWeakComp
pWeakComp, 2StepReach, 2StepP, ReachEfficency
Brokerage, nBrokerage, EgoBetween, nEgoBetween

Out

Un

Structural holes EffSize, Efficiency, Constraint, Hierarchy, Degree
EgoBetween, Ln(Constraint), Indirects, Density

GN
Structural holes EffSize, Efficiency, Constraint, Hierarchy, Indirect

Centrality Degree, Closeness, Betweenness, Eigenvector

4 Empirical study design

The aim of this study is to identify more effective alternatives to size met-
rics, enhance the explainability of prediction models, and increase users’ trust
in these models. In pursuit of these objectives, we formulate three research
questions. This section chiefly expounds upon the research questions, outlines
the critical steps and methods involved in the experimental process.

4.1 Research questions

RQ1: Are size metrics essential for constructing a well-performed
defect prediction model?

Motivation: Since size metrics could be significantly important metrics
for defect prediction, we assess to what extent the impact on performance is
if size metrics are removed. Meanwhile, we intend to recover the performance
loss caused by excluding them in further experiments, and thus a baseline
performance is needed for comparison.

Approach: To assess the impact of size metrics on performance, we should
generate two defect prediction models built with and without size metrics
in advance. The size metrics to remove are introduced in Section 3.2. The
experimental process for model generation is showed on Fig.1. We compared
the performance of prediction models constracted by with and without size
metrics. The results were analyzed using the Scott-Knot Test.

RQ2: Can we improve performance by involving SNA metrics
after removing size metrics?
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Motivation: Based on Table 4, we involve SNA metrics and explore
whether they can recover model performance after removing size metrics. We
also examine whether the model performance is acceptable (e.g., AUC-ROC
> 0.7 [Fawcett, 2006]) for an explanation.

Approach: To analyze whether performance can be improved by involving
SNA metrics after removing size metrics, we generate another prediction model
built with SNA and without size metrics. Except for dataset, the experimental
process for model generation is similar. We compare the contribution of metrics
and performance of models with the results of RQ1. Additionally we analyze
the results using the Scott-Knot Test.

RQ3: Which metrics are better alternatives to size metrics?
Motivation: We explain and compare the behavior of models built in RQ1

and RQ2 by exploiting SHAP to reveal which metrics are making up for the
absence of size metrics. We further discuss and conclude which metrics are
better alternatives to size metrics.

Approach: To find the alternative metrics to size metrics, we should ex-
plore the impact and contribution of the features on the two prediction models
constructed in RQ1 and one model constructed in RQ2. We use SHAP to
analyze the difference and relationship between the potential alternative met-
rics on the model prediction results by comparing the feature importance
and feature interaction with size metrics. Specifically, we use SHAP to obtain
the Shapley feature importance values and summary plots of the prediction
instances. To further explore the impact of feature interactions on model
prediction, the experiment also analyzes the dependence plot using SHAP, fo-
cusing on the feature interactions of the size metrics as well as alternative
metrics.

4.2 Methodology

Fig.1 depicts the experiment design, comprising three part: dataset con-
struction, expounded upon in Section 3, defect prediction, and explanation.
This section particularly accentuates the fundamental phases and approaches
in constructing and interpreting the model, namely: 1) feature selection, 2)
model validation, 3) data sampling, 4) classifier selection, 5) performance
evaluation, and 6) introduction of SHAP.

4.2.1 Feature selection

The correlation and multicollinearity among features can significantly
impact the performance [Katrutsa and Strijov, 2017] and explainability
[Marcilio and Eler, 2020] of the prediction model. To select a reasonable
set of features before constructing the model, we use AutoSpearman
[Jiarpakdee et al., 2018] to mitigate the correlation between features, which
is a feature selection approach aiming at reducing multicollinearity while
preserving most features. We apply the implementation available in the Py-
Explainer [Pornprasit et al., 2021]. Feature selection is performed for each
available combination of metric sets and data validation.
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Figure 1 Experimental flow graph

4.2.2 Model validation

The validation approaches in software defect prediction can be classified
as both within- and cross-project [Hosseini et al., 2019]. Within-project defect
prediction refers to prediction models with training dataset and test dataset
from the same project. Cross-project defect prediction typically refers to us-
ing the source project data to construct a prediction model to perform defect
prediction on the target project data. To address the issue of the cold start
problem for new dataset, and to improve the generalizability of prediction mod-
els, many efforts have been made by the research community to improve defect
prediction in cross-project defect prediction scenarios. For instance, Nam et al.
[Nam et al., 2013] proposed a TCA+ technique based on an extension of the
TCA to mitigate data distribution differences and applied it to cross-project
defect prediction using the feature mapping idea. Our study validates model
in cross- and within-project scenarios. In terms of within-project prediction,
10-fold cross-validation is used, where for each project, the dataset is ran-
domly divided into 10 parts, 9 of which are used for training and 1 for testing.
Specifically, the process is repeated 10 times. In cross-project validation, we
use a project-wide LOOCV (leave-one-out cross-over), i.e., for each iteration,
1 project is selected as the test dataset, and the others are regarded as the
training dataset.
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4.2.3 Data sampling

The defect prediction dataset are imbalanced naturally (e.g., the distri-
bution of defects fits with the Pareto principle). However, overly imbalanced
dataset tend to impose a significant negative impact on model performance
[Song et al., 2019]. Therefore, it is necessary to preprocess the imbalanced
dataset before constructing the model. We use the SMOTE method, which is
an oversampling technique for generating more minority class data by inter-
polating between the nearest neighbors of the minority class to synthesize the
creation of new minority class instances [Naufal and Kusuma, 2019].

4.2.4 Classifier selection

To choose the best-performed classifier, several machine learning algorithms
are applied such as RF (Random Forest), LR (Logistic Regression), NB (Naive
Bayes), SVM (Support Vector Machine), and XGB (XGBoost) to construct
prediction models for defect prediction and compares the experimental results
based on evaluation metrics.

4.2.5 Performance evaluation

ACC, AUC-ROC, and MCC are used in the experiment for performance
evaluation. ACC is a direct representation of the model’s accuracy and
is widely used to evaluate model performance. AUC-ROC[Fawcett, 2006] is
measured by the area under the ROC curve, whose value is usually be-
tween 0.5 and 1. MCC (Matthews correlation coefficient ([Chicco et al., 2021])
is an evaluation metric that measures the relationship between the pre-
dicted class and the actual class, and it can yield stable results when
applied to imbalanced dataset. To verify whether the experimental results
are statistically significant, we exploit SK-ESD (Scott-Knott Effect Size
Difference)[Tantithamthavorn et al., 2017] test, which is based on hierarchical
cluster analysis and divides the results into statistically distinct groups. The
SK-ESD test does not require the input to be normally distributed, since it
can correct for the non-normal distribution of the input data. We apply the
original SK-ESD implementation available in an R package4.

4.2.6 SHAP

As we mentioned in Section 2.3.2, SHAP could be exploited to interpret the
model’s decision, which is an estimation method for Shapley values and based
on the game’s theoretically optimal Shapley value. Firstly the Shapley value
is an alliance game theoretic approach to the average marginal contribution of
feature values across all combinations of features. It can be used to illustrate
a fair distribution of feature contributions to the total outcome. Moreover,
it is applicable to classification and regression problems and can be used to
calculate a solution to feature contributions for a single prediction instance

4https://github.com/klainfo/ScottKnottESD
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of any machine learning model. For example, assuming that there exists a
feature j of prediction instance z. The interpretation of the Shapley value for
feature j is that the value of the j -th feature contributes Φj to the prediction
of the instance z. Since the interpretation given by the Shapley value always
employs all features, calculating the Shapley value takes a plant of time if
the feature combination space is too large. Therefore a number of estimation
methods for Shapley values such as SHAP have emerged. The goal of SHAP
is to interpret the prediction of instance x by calculating the contribution of
each feature to the prediction of x. The interpretation of the Shapley values in
the SHAP algorithm is represented as an additive feature imputation method.
For example, in a linear model, SHAP specifies the interpretation using the
equation (1).

g (X) = ϕ0 +

M∑
i=1

ϕixi (1)

SHAP transforms the features of the instance into simple binary features as
input and constructs a linear explanatory model g. As in the above equation,
x ∈ {0, 1}M is the feature vector, M is the feature space size, and Φi is the
feature imputation Shapley value for feature i, and Φ0 is the average predictive
value of the model. Specifically, when xi is equal to 1, it means that the i -th
feature of the predicted example x exist in the feature union space. While xi is
equal to 0, it means that the i -th feature of the predicted example x not exist
in the feature union space. ∥Φi∥ is the SHAP feature importance score. Larger
∥Φi∥ indicates greater influence of the i -th feature on the positive prediction
result of the model. In contrast to other local interpretation techniques, the
global interpretation of SHAP is consistent with the local interpretation. In
addition, the authors proposed an more efficient estimation method based on
the tree model called treeSHAP, which can obtain accurate Shapley values or
correctly estimate them when features are correlated. It is also utilized for our
experiments.

5 Result and discussion

In this section, we introduce experimental results and outline the findings
and implications.

5.1 RQ1: Removing size metrics

To enable a more comprehensive comparative analysis of both research
questions, in Table 5, we present the experimental outcomes related to RQ1
and RQ2. Table 5 displays metric subsets M1, M2, and M3. Experiments for
M1 and M2 were conducted in the context of RQ1, M3 was explored under the
purview of RQ2. The detailed account of the metrics M1, M2 and M3 is as fol-
low. M1 represents including size metrics, M2 represents code metrics removing
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size metrics, and M3 represents adding SNA metrics. For RQ1, we focus on
the scenarios with M1 and M2. In terms of the within-project validation (up-
per half part of Table 5), the performance of the models constructed without
size metrics decreases for all methods except NB for AUC-ROC and ACC. For
MCC, the performance of the models decreases for all five algorithms. In terms
of the cross-project validation (bottom half part of Table 5), the performance
of the predictive models constructed by all five machine learning algorithms
decreases for AUC-ROC, ACC, and MCC after removing size metrics.

However, although a decline in performance is observed, the removal of
size metrics does not impose a significant impact on AUC-ROC performance
(i.e., less than 2% in most cases). The statistical significance of the results will
be discussed in subsection 5.2 together with SNA metrics. In within-project
prediction, we can still construct good predictors using RF with regards to
performance. Size metrics are helpful for defect prediction, but they are not
essential for building a well-performed model in the majority of cases.

Finding 1. After removing size metrics, the performance of defect pre-
diction models is very likely to decline in both within- and cross-project
validation, and thus size metrics are helpful for defect prediction. However,
since the impact to performance is limited, they are not essential for building a
well-performed model. Considering the preference of practitioners, we believe
size metrics should be removed, and alternative metrics should be involved to
make up for the performance decline.

Table 5 Model Performance Results

ML
AUC-ROC ACC MCC

M1 M2 M3 M1 M2 M3 M1 M2 M3

RF 0.77873 0.76744 0.81581 0.77091 0.76213 0.79179 0.36186 0.34591 0.38839

XGB 0.77934 0.76398 0.79431 0.74885 0.74258 0.76160 0.38085 0.35142 0.38737

SVM 0.70452 0.65267 0.72572 0.68231 0.67109 0.69758 0.25115 0.22376 0.28668

NB 0.71895 0.72904 0.75434 0.65145 0.66922 0.68347 0.28472 0.28256 0.31262

LR 0.73419 0.71363 0.72879 0.70006 0.69139 0.69326 0.31211 0.28082 0.30191

RF 0.64871 0.64216 0.67900 0.62933 0.61909 0.63685 0.19501 0.19229 0.22649

XGB 0.66523 0.66262 0.68680 0.64237 0.63424 0.64091 0.19235 0.19176 0.23171

SVM 0.67443 0.66549 0.67262 0.63817 0.62656 0.61085 0.20932 0.20306 0.20522

NB 0.66201 0.65806 0.68900 0.63815 0.62962 0.64521 0.19127 0.19081 0.23460

LR 0.66706 0.66375 0.67527 0.63912 0.62783 0.61929 0.19944 0.19678 0.21199

5.2 RQ2: Involving SNA metrics

For RQ2, in Table 5, we focus on the scenarios with M2 and M3. In terms
of within-project prediction, for AUC-ROC, ACC and MCC, the performance
of the models constructed with SNA metrics compared to those constructed
with the removal of the size metrics improves for all five machine learning al-
gorithms. Except for LR, the models constructed with the SNA metrics are
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superior to those constructed using only the code metrics. In terms of cross-
project prediction, for AUC-ROC and MCC, the performance of the models
constructed by adding the SNA metrics compared to those constructed by re-
moving the size metrics is improved for all five machine learning algorithms.
For ACC, the models constructed by incorporating the SNA metric demon-
strated enhanced performance across all methods, except for SVM, when
compared to the models constructed by removing the size metrics. For AUC-
ROC and MCC, the performance of the models constructed with the SNA
metrics are improved compared to those constructed using only the code met-
rics, except for the SVM. For ACC, the performance of the models constructed
with the SNA metrics is improved compared to those constructed using only
the code metric, except for the SVM and LR. The RF model has the best av-
erage results compared to other machine learning models, and the prediction
results of the random forest model are used for discussion and analysis in the
subsequent experiment in RQ3.

Fig. 2 shows the SK-ESD rankings of the three generated models. The hor-
izontal axes represents the performance metrics, i.e., AUC-ROC, ACC, and
MCC. The vertical axes corresponds to the results of the SK-ESD. The data
point in the middle presents the mean value of SK-ESD and the top one
presents the mean value plus standard deviation and the bottom one presents
the mean value minus standard deviation. The shape of the data points, as
shown in the legend, distinguishes the three different sets of metrics, which
are sets including size metrics but without SNA metrics (+Size/-SNA), sets
without size metrics and without SNA metrics (-Size/-SNA), and sets without
size metrics but including SNA metrics (-Size/+SNA). In addition, the group
ranking of the prediction models is marked by different colors, e.g., red for
the 1st rank and blue for the 2nd rank. The metric sets marked in red are su-
perior in terms of performance. In within-project validation, as Fig.2(a), the
mean value calculated by SK-ESD for the prediction models constructed with
the SNA metrics (i.e., the -Size/+SNA metric set) is better than other met-
ric sets. For AUC-ROC and MCC, the SK-ESD group ranking shows that the
prediction models constructed with the addition of SNA metrics are superior
to those constructed with the other two metric sets. In the cross-project vali-
dation, as Fig.2(b), the findings are similar to those described above. However,
for ACC, the group rankings of the three models are consistent, which means
the performance difference is not statistically significant.

Finding 2. For most machine learning algorithms, in both within- and
cross-project prediction, defect prediction models constructed with the SNA
metrics are better than those constructed with and without size metrics. In
addition, according to the SK-ESD rankings, the models constructed by adding
the SNA metrics also outperformed the models constructed by removing the
size metrics and using only the code metrics. Thus, after removing size metrics
SNA metrics are suggested to involve for prediction.
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(a)

(b)

Figure 2 SK-ESD rankings of prediction results. (a) Within-project prediction results, (b)
Cross-project prediction results.
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5.3 RQ3: Better alternative metrics to size metrics

In this section, we focus on the 3 prediction models constructed in the
previous RQs and analyze feature importance and feature interaction in these
models. We assess the feature importance of size metrics and SNA metrics
through SHAP value. First of all, we analyze the influence of size metrics and
SNA metrics on the prediction results through a summary plot of one project
instance. We also focus on the overall feature importance through the mean
SHAP value of the aggregated data. Finally, we use dependence plots to explore
the effect of the interaction of specific metrics on the prediction results from
one instance.

For the jEdit project, we analyze by summary plots in Fig.3 and Fig.4 the
importance of the size metrics and SNA metrics, as well as, their impact on
the prediction model in two validations. Summary plots of other instances are
included in the online appendix 1. For the summary plot, all sample points
are presented and the color bar reflects features value, i.e. red (high) and
blue (low). Additionally, a vertical line shows that points emerging along the
right (left) are contributing to increasing (decreasing) the defect probability
[Esteves et al., 2020]. Fig.3 shows the top 10 important features of experimen-
tal results for within-project validation. For Fig.3(a), taking size metric (amc)
as an example, the higher amc values (red points), the lower the SHAP values
are. That means high amc values decrease the chance of models predicting de-
fects in the instance. For Fig.3(b), the top-ranked metric is pWeakC(out) and
it means that this metric is the most influential in the instance. Similarly, the
higher pWeakC(out) values (red points), the lower the SHAP values are and
higher pWeakC(out) values decrease the chance of models predicting defects.
Fig.4 shows the top 10 important features of experimental results for cross-
project validation. For Fig.4(a) and Fig.4(b), we can obtain similar summary
plot analysis for the same metric i.e., amc and pWeakC(out).

The experimental results of the feature importance rankings under both
validations in all projects are shown in Table 6 and Table 7. Both of them are
given in descending order of the mean SHAP value. The feature importance of
the size metrics is displayed on the left part of the table, and the SNA metrics
are on the right. Table 6 shows the results of the comparison in within-project
validation, the left side of the table contains two size metrics and the right
side of the table contains four SNA metrics. Three SNA metrics are higher
in importance ranking compared with other remaining code metrics. Table 7
shows the comparison results in the cross-project. In the top-10 SHAP value
importance ranking, the left side of the table contains 3 size metrics and the
right side of the table contains 5 SNA metrics.

On the other hand, metrics with higher consistency in the effect of feature
interactions on prediction outcomes are more likely to be used as alternative
metrics. Therefore, the experiment explores the effect of feature interactions on
prediction outcomes with the same instance (jEdit) through dependence plots.
Initially, the study examine the impact of a single feature on the prediction
outcomes to determine whether the SNA metric and the size metric displayed
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(a)

(b)

Figure 3 SHAP summary plot for within-project prediction. (a) Dataset with size metrics,
(b) Dataset with SNA metrics and without size metrics.
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(a)

(b)

Figure 4 SHAP summary plot for cross-project prediction. (a) Dataset with size metrics,
(b) Dataset with SNA metrics and without size metrics.
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(a)

(b)

Figure 5 Two-feature interaction plots. (a) AMC and LCOM in within-project validation,
(b) pWeakC(out) and LCOM in within-project validation.
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(a)

(b)

Figure 6 Two-feature interaction plots. (a) AMC and LCOM in cross-project validation,
(b) pWeakC(out) and LCOM in cross-project validation.
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Table 6 SHAP value of all projects (within-project)

Size SHAP value (mean) SNA SHAP value (mean)

AMC 0.073215 pWeakC(out) 0.041868

LCOM 0.063169 Betweenness 0.039147

CAM 0.061237 2StepP(out) 0.035751

LCOM3 0.060809 AVG(CC) 0.034491

AVG(CC) 0.058955 LCOM 0.034378

DAM 0.058013 DAM 0.030776

NPM 0.053092 CAM 0.030754

MFA 0.050671 LCOM3 0.028906

CA 0.044052 CBO 0.027125

CBM 0.041999 ReachE(un) 0.024551

DIT 0.034897 Indirec(g) 0.022581

IC 0.024945 2StepR(un) 0.022032

MOA 0.021315 MFA 0.021722

NOC 0.008150 Densit(out) 0.021035

Table 7 SHAP value of all projects (cross-project)

Size SHAP value (mean) SNA SHAP value (mean)

AMC 0.052028 Closeness 0.056397

CAM 0.048131 LCOM3 0.042383

NPM 0.046602 pWeakC(out) 0.037451

LCOM3 0.045439 Betweenness 0.037135

CA 0.038213 Eigenvector 0.026029

LCOM 0.038174 CAM 0.025075

MOA 0.035131 CBM 0.023857

DIT 0.033895 LCOM 0.022769

IC 0.033053 AVG(CC) 0.018861

AVG(CC) 0.027356 2StepP(out) 0.017755

NOC 0.009310 2StepR(un) 0.015017

comparable distributions regarding feature interactions. Subsequently, we ex-
plore the effects of interactions between features on the prediction results to
assess whether the size metrics and the SNA metrics exhibited similar dis-
tributions when interacting with non-size code metric features. Based on the
aforementioned experimental results, we focus on the most significant SNA
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metrics (i.e., pWeakC(out), Betweenness) and size metrics (i.e., AMC, NPM,
MOA). As an example, while considering the space, we summarize compar-
ative results of the impact of the interaction between two features on the
prediction results using the combination of AMC, pWeakC(out), and LCOM.
Fig.5 and Fig.6 shows the experimental results of the dependence plots in
two validations and each data point represents a specific sample. For the two-
feature interaction plots, the vertical axes on the left side of the plot means
the SHAP value of the feature and the horizontal corresponds to the feature
value. The feature value is reflected in different colors (red for high, and blue
for low), as shown on the right side of the plot. Taking the AMC (LCOM) and
pWeakC(out) (LCOM) metrics as examples, the comparison results for the
interaction between two features reveal that AMC and pWeakC(out) have a
relatively similar effect on model prediction. Therefore, it could be concluded
that pWeakC(out) can be used as a substitute metric for the AMC. We also
observe similar results in other combinations of metrics (e.g., Betweenness and
MOA and they are included in the online appendix1).

Finding 3. According to feature importance and ranking results, the SNA
metrics called Betweenness and pWeakC(out) have high importance in both
validation scenarios. In addition, feature interaction results show that Be-
tweenness is consistent with the size metric MOA for model prediction, and
pWeakC(out) is more similar to the size metric AMC in model prediction.
Therefore, we believe that these two SNA metrics can be used as alternative
metrics to the size metrics.

6 Threats to validity

The threats to validity introduced in this section may affect our results and
conclusions.

6.1 External validity

External validity can hinder the generalization of the findings. Only lim-
ited open-source projects are considered in the experiment, and we can not
guarantee the conclusions remain consistent on other projects. However, we
used the gold-standard PORMISE dataset studied widely in defect prediction,
and we believe the projects in this dataset are classical. Moreover, the projects
used in the experiment are all Java projects, and the experiment only involved
discussion and analysis of the Java-based applications, instead of other com-
monly used programming languages such as C/C++ and Python. We suggest
replicating our results in dataset of other programming languages.

6.2 Internal validity

Internal validity refers to the impact of independent variables on dependent
variables in an experiment. The experiment in this study is primarily based
on open-source code metrics dataset, which may be affected by computational
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errors. However, these dataset are widely validated for defect prediction, and
we believe their validity could be an assurance to a great extent. Additionally,
the SNA metrics considered in the experiment are obtained through source
code information extraction and dependency network analysis using network
metrics calculation tools. It is not guaranteed that these methods and tools
could completely reflect the dependency networks of the projects.

6.3 Construct validity

Construct validity refers to the extent to which the experimental results can
be inferred to represent concepts or theories. On the one hand, there are numer-
ous types of feature selection methods, such as filter, wrapper, and embedded
methods. To generate a highly consistent subset of metrics, our experiment
uses the AutoSpearman method for feature selection. AutoSpearman may not
generate the best performance compared to other feature selection methods.
However, we apply it since it mitigates multicollinearity to a great extent and
generates stable results for XAI. Moreover, it has been proven reliable for de-
fect prediction in related empirical studies [Jiarpakdee, 2019]. On the other
hand, to understand the impact of feature importance and feature interactions
on model prediction, we apply SHAP in the experiment. However, other model
interpretation methods such as LIME and Breakdown are not considered, and
it is not guaranteed that consistent conclusions can be drawn from the results
using these methods. Recent work [Jiarpakdee et al., 2022, Yang et al., 2021b]
has shown a high level of consistency in their results.

7 Conclusion and future work

In this study, we explore the use of SNA metrics and existing code metrics
as alternatives for size metrics in defect prediction based on a gold-standard
open-source software dataset. We compare the performance and apply SHAP
to interpret the model from the perspectives of feature importance and feature
interaction to explain model behavior and the impact of features on defect
prediction. Based on our findings, we conclude that (1) size metrics are helpful
but not essential for building well-performed models, and (2) two SNA metrics
and several existing code metrics can be used as alternatives to size metrics.
Since practitioners may not prefer size metrics [Antinyan., 2021], we suggest
discarding them and introducing alternatives to preserve the information that
size metrics may capture.

In the future, we plan to (1) evaluate the acceptance of defect predic-
tion models without size metrics, (2) replicate our results in commercial and
projects in other programming languages, and (3) continuously improve the
performance of the prediction model and explore the potential of other types
of metrics.
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