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Recent research found that fine-tuning pre-trained models
is superior to training models from scratch in just-in-time
(JIT) defect prediction. However,existing approaches using
pre-trained models have their limitations. First, the input
length is constrained by the pre-trained models.Secondly,
the inputs are change-agnostic.To address these limitations,
we propose JIT-Block, a JIT defect prediction method that
combines multiple input semantics using changed block as
the fundamental unit. We restructure the JIT-Defects4)
dataset used in previous research. We then conducted a
comprehensive comparison using eleven performance met-
rics, including both effort-aware and effort-agnostic mea-
sures, against six state-of-the-art baseline models. The re-
sults demonstrate that on the JIT defect prediction task,
our approach outperforms the baseline models in all six met-
rics, showing improvements ranging from 1.5% to 800% in
effort-agnostic metrics and 0.3% to 57% in effort-aware
metrics. For the JIT defect code line localization task, our
approach outperforms the baseline models in three out of

five metrics, showing improvements of 11% to 140%.
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1 | INTRODUCTION

Software defect prediction aims at locating the most defect-prone code components, in order to provide suggestion
for more efficient allocation of software quality assurance resources. Recently, practitioners discovered that the cost
of software maintenance resulting from defects increases over time [1, 2] and the traditional defect prediction ap-
proaches may not be responsive and effective enough to resolve bugs. Thus, JIT (Just-In-Time) defect prediction
approaches are proposed to defect prediction in the granularity of code commits submitted by developers. Research
indicated that the majority of defects in software systems are introduced through the submitted commits during the
software development process [3]. Therefore, there is a pressing need for high-performance JIT defect prediction
models to assist code reviewers in their work.

In the past, researchers typically trained deep learning models from scratch to build JIT defect prediction models,
and these works can be categorized into coarse-grained [4, 5, 6, 7, 8, 9] or fine-grained [10, 11, 12, 13, 14, 15] defect
prediction based on the detection granularity. Although these methods made some progress, their performance is still
not promising. This could be due to the limited size of the training dataset, which prevented the models from learning
sufficient knowledge for accurate JIT defect prediction [16].

Recently, Ni et al. introduced the JIT-Fine model [17], which differs from previous approaches that involve training
models from scratch. JIT-Fine utilizes CodeBERT [18, 19, 20] (A pre-trained model that possesses common knowledge
in both the programming and natural language domains) as a pre-trained model to extract semantic features from the
changed code, then it combines semantic features with expert features defined by Kamei et al.[21] for the JIT defect
prediction task(JIT-DP)(identifying defect-inducing commits) and the JIT defect localization task(JIT-DL)(identifying
defect-inducing code lines in commits). Semantic features are learned from the semantic information and syntax
structure of the source code. They represent the code semantics that are prone to defects. Expert features, on the
other hand, are characteristics derived from the expertise and experience of professionals. JIT-Fine outperforms all
previous JIT defect prediction models, with performance improvements ranging from 10% to 629% compared to
baseline models. However, JIT-Fine has two limitations. First, the input length is constrained by the pre-training
model (CodeBERT typically has a token limit of 512). To meet this requirement, Ni et al. [17] directly truncate the
source code data. However, a considerable number of commits exceed the length limitation. For example,about 60%
of commits exceed the length limitation in JIT-Defect4J dataset. As a result, the dataset is not completely learned by
the model. Furthermore, the token length distribution of defect-introducing commits is similar to that of all commits.
Therefore, the truncated defect-introducing commits may become training noise (cf. Section 2). Second, JIT-Fine's
input is change-agnostic. This can confuse the model and diminish its ability to learn the semantic meaning of the
changed code (cf. Section 2). To overcome these limitations, we propose JIT-Block, a JIT defect prediction model
that combines multiple input semantics based on changed block (cf. Section 2). This model has the ability to handle
longer inputs and extract the semantic meaning of changed code more effectively, resulting in improved prediction
performance. Specifically, we reconstruct the JIT-Defect4) dataset used by the JIT-Fine model [17], organizing it
based on changed blocks. This reconstructed dataset is referred to as JIT-Block-Defect4) in this paper. Similar to
previous work, JIT-Block combines expert features with extracted semantic features to jointly learn the features for
JIT defect prediction tasks. Furthermore, an attention mechanism is used to locate the lines of defective code. The
main contributions of this study are as follows:

1.JIT-Block-Defect4) dataset. We reconstruct the JIT-Defect4) dataset proposed by Ni et al. [17] and obtain the
JIT-Block-Defect4) dataset. We also introduce a novel approach to organizing JIT defect prediction datasets, using

changed blocks as the fundamental unit.

2.JIT-Block. We propose JIT-Block, a method that can handle longer inputs and better extract semantic infor-
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mation from code changes. JIT-Block outperforms the baseline on all six metrics for JIT-DP task and achieves im-
provement in three out of five metrics for JIT-DL task. The implementation of the JIT-Block model and the JIT-Block-
Defect4) dataset are publicly available 1.

3.Analyzing the effectiveness of using changed block. We compare the impact of using changed block as the
fundamental unit for input organization with traditional methods on model performance. The results demonstrate
the advantages of our approach (i.e., higher F1 and MCC performance).

The rest of the paper is organized as follows. Section 2 presents the background and motivation of our research.
Section 3 provides a detailed description of the design of JIT-Block. Section 4 discusses the experimental setup. In
Section 5, we present and analyze the experimental results. Section 6 discusses potential threats to the validity of
our findings. Section 7 introduces related research work. Finally, Section 8 summarizes our work and proposes future

research directions.

2 | BACKGROUND AND MOTIVATION

2.1 | Traditional JIT defect prediction datasets lack relative positional information

Typically, the main content of a commit primarily consists of the modified source files. The intention of the submitter
could be to develop a new feature or fix a source code bug, among other things. Fig.1 shows an example of a commit
submission from the Apache-ant-ivy repository. Each code line in the commit is marked with a special symbol to

indicate its status (no marking indicates no modification, "+" indicates an added code line, and a sign indicates a
deleted code line). From the code changes, we can clearly understand the general intention of the submitter. In this
case, the submitter attempted to add new predicate expressions within two "if" condition statements. However, in
traditional JIT datasets used in the field of JIT defect prediction, such as JIT-Defect4) proposed by Ni [17] and the
Qt and OpenStack datasets proposed by McIntosh and Kamei [22], this information is not clear. The reason is that
the relative positional information of the deleted and added code lines is lost in the datasets. We assume that this
would hinders the model’s ability to learn the semantic information hidden in the changed code. For example, in the
JIT-Defect4) dataset, this commit is organized in the form depicted in Fig.2. In the JIT-Defect4J or Qt and OpenStack
datasets, the code change information in each commit is simply divided into two parts: the added code part and the
deleted code part. This simplistic division results in the loss of relative positional information between the deleted
and added code lines. Consequently, it becomes challenging for the model to extract the commit author’s intent from
the data (i.e., semantic information). For example, when the model receives an input like “+169 +288 -169 -288 [Sep]”,
where the "+" denotes added code line, the "-" sign denotes deleted code line, and the numbers represent the code
lines with their corresponding line numbers in the commit, the “[Sep]” is a special token used to separate source code.
The model may struggle to understand the author’s intent because it cannot determine whether “-169” represents a
change relative to “+169” or “+288", and the same ambiguity applies to “-288".

To address this issue, we propose organizing the JIT defect prediction dataset using changed block as the fun-
damental unit. This is illustrated in Fig.3. Our core idea is to consider a continuous block of added or deleted code
lines as a changed block to preserve the relative positional information between added and deleted code. Thus, we
transform the input to a format like “-169+169 [Sep] -288+288". We hypothesize that this would enable the model to
easily recognize that “+169” represents changes relative to “-169” and “+288" represents changes relative to “-288".
Consequently, it would facilitate the model in learning the semantic information embedded within the changed code

more effectively.

Lhttps:/github.com/hangters/JIT-Block
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S if (!mrid.isExactRevision()) {

+ if (!mrid.isExactRevision() && ModuleRevisionId.isExactRevision(ivyRef.getRevision())) {
resolvedMrid = new ModuleRevisionId(mrid.getModuleId(), ivyRef.getRevision());
IvyNode node = data.getNode(resolvedMrid);
if (node !'= null &% node.getModuleRevision() != null) {

@@ -285,7 +285,7 @@ public ResolvedModuleRevision getDependency(DependencyDescriptor dd, ResolveData

285 285 if (!resolvedMrid.isExactRevision()) {
286 286 resolvedMrid = md.getResolvedModuleRevisionId();
287 287 if (resolvedMrid.getRevision() == null || resolvedMrid.getRevision().length() == @) {
288 = if (ivyRef.getRevision() == null || ivyRef.getRevision().length() == @) {
288  + if (ivyRef.getRevision() == null || ivyRef.getRevision().length() == @ ||

IModuleRevisionId.isExactRevision(ivyRef.getRevision())) {

FIGURE 1 A commit from Apache-ant-ivy repository

169 = if (!mrid.isExactRevision()) {

169 4+ if (Imrid.isExactRevision() && ModuleRevisionId.isExactRevision(ivyRef.getRevision())) { The added code part
17 170 resolvedMrid = new ModuleRevisionId(mrid.getModuleId(), ivyRef.getRevision());
171 171 IvyNode node = data.getNode(resolvedirid);
172 172 if (node != null & node.getModuleRevision() != null) {

: @@ -285,7 +285,7 @@ public ResolvedModuleRevision getDependency(DependencyDescriptor dd, ResolveData

285 285 if (lresolvedMrid.isExactRevision()) {
286 286 resolvedirid = md.getResolvedioduleRevisionId();
287 287 if (resolvedMrid.getRevision() == null || resolvedMrid.getRevision().length() == @) {
288 5 if (ivyRef.getRevision() == null || ivyRef.getRevision().length() == @) {

288 4+ if (ivyRef.getRevision() == null || ivyRef.getRevision().length() == @ ||

IModuleRevisionId. isExactRevision(ivyRef.getRevision())) { The removed code part

FIGURE 2 An example of how the changed code is organized in the JIT-Defect4) dataset

169 = if (Imrid.isExactRevision()) {

han Block 1
69 + if (Imrid.isExactRevision() & ModuleRevisionId.isExactRevision(ivyRef.getRevision())) { > Changed Bloc
17 170 resolvedMrid = new ModuleRevisionId(mrid.getModuleId(), ivyRef.getRevision());
171 1 IvyNode node = data.getNode(resolvedMrid);
172 172 if (node != null 8& node.getModuleRevision() != null) {
i @@ -285,7 +285,7 @ public ResolvedModuleRevision getDependency(DependencyDescriptor dd, ResolveData
285 285 if (IresolvedMrid.isExactRevision()) {
286 286 resolvedMrid = md.getResolvedModuleRevisionId();
287 287 if (resolvedMrid.getRevision() == null || resolvedMrid.getRevision().length() == @) {
288 - if (ivyRef.getRevision() == null || ivyRef.getRevision().length()

o ¢
ol i Changed Block 2

288+ if (ivyRef.getRevision() == null || ivyRef.getRevision().length()

IModuleRevisionId. isExactRevision(ivyRef.getRevision())) {

FIGURE 3 An example of how the changed code is organized using changed block as the unit
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2.2 | Thelimited input length poses a challenge for JIT defect prediction models

Existing methods based on pre-trained models often have limitations on input length. For example, JIT-Fine [17] uti-
lizes the pre-trained model CodeBERT [19], which often restricts its input length to 512 tokens. However, our research
findings indicate that the 512-token input length cannot meet the input requirements for the majority of commit data.
Taking the JIT-Defect4) dataset as an example, the distribution of the length in data samples is shown in Fig.4. (The
length refers to the total number of tokens including added and deleted code lines, excluding unchanged code lines).
It reveals that nearly 60% of data samples have a valid length exceeding this length limitation. We also investigate the
distribution of the length in defect-introducing commits. As shown in Fig.5, we conduct a KS test to compare these
two distributions (the length distribution of all commits and the length distribution of defect-introducing commits).
The resulting p-value of 0.81 suggests that these two data categories follow a similar distribution. Consequently,
whether a defect-introducing commit or not, directly truncating the input length of the commit to meet the 512-input
length (similar to the approach used in JIT-Fine) would result in nearly 60% of the data being unused. We consider
this to be an unacceptable waste, as it significantly impacts the performance of JIT defect prediction models. Further-
more, if a truncated defect-introducing commit has its corresponding defective code changes beyond 512 tokens, that
positive sample (defect-introducing commits are positive samples and clean commits are negative samples) not only
remains unlearned by the model but may introduce noise. This occurs because the sample is labeled as defective, yet
the model does not receive the corresponding defective code change input. Moreover, since the JIT defect prediction
dataset is an imbalanced dataset (cf. Section 3), where each positive sample is valuable and should be learned by the
model, it becomes crucial to find a method that can handle multiple inputs to accomplish the JIT defect prediction task.

We hypothesize that finding an effective approach to handle multiple inputs could improve the model’s performance.
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FIGURE 4 The length distribution of all commit in JIT-Defect4) dataset (with intervals of 512)

3 | JIT-BLOCK

3.1 | An Overview of JIT-Block

As shown in Fig.6, the JIT-Defect4) dataset is reconstructed, then similar to previous works, we utilize the widely

used 14 change-level expert features defined by Kamei et al.[21]. We also extract semantic features of the changed
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FIGURE 5 The length distribution of defect-introducing commit in JIT-Defect4) dataset (with intervals of 512)

code using CodeBERT. However, in contrast to previous approaches, this study incorporates multi-input semantic
features related to the changes and expert features for joint learning. The joint feature learning stage mainly consists
of two fully connected layers. Finally, the joint features from multiple inputs are employed to predict defect-inducing
commits and locate the defective code lines. Please note that in Fig.6, the Changed Block union 1-n comes from the
same commit. In other words, the JIT-Block divides a single, overly long commit into several Changed Block unions
to alleviate input length limitations.The detailed information about JIT-Block will be presented in this section.

Semantic Feature Extraction
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feism) (=)

CodeBERT
(“Changed Block union 1] -
Prediction &

Code Repr ion: Integrated Feature Learning Localization

_ (resin )@ (e e~ )
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JIT-xx Dataset JIT-Block-xx Dataset
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Expert Feature Extraction

Linear
SoftMax

FIGURE 6 An overview of JIT-Block

3.2 | Refactoring JIT-Defect4) dataset

The JIT defect prediction community has been plagued by low-quality datasets due to tangled commits [23]. A single
commit can contain multiple types of code changes, such as bug fixes, code refactoring, and new feature development.

Due to tangled commits, the traditional methods of collecting JIT defect prediction datasets may not be accurate
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enough [22]. Ni et al. [17] addressed this issue by building JIT-Defect4) rely on the LLTC4J dataset [24]. LLTC4J was
manually annotated by 45 experienced participants to determine the purpose of each changed line. They considered
commits that were marked by participants as contributing to bug fixing as defective commits, which greatly alleviated
the impact of tangled commits on JIT defect prediction datasets. The JIT-Defect4J dataset consists of 27,319 commits
from 21 large-scale open-source Java projects, of which 2,332 code commits are defective, resulting in a bug rate of
approximately 8.5%.

To implement JIT-Block, the JIT-Defect4) dataset is reconstructed in the form of changed blocks to preserve
relative position information. The reconstruction method is illustrated in Fig.7. The Git interface is utilized by providing
the commit IDs from the JIT-Defect4) dataset to collect the original commit files. The original commit files are then
read to obtain the line numbers of each added or deleted code line in the JIT-Defect4) dataset. Finally, all added code
lines and deleted code lines are sorted in ascending order based on their line numbers and reorganized into changed
blocks to preserve the relative positional information between added and deleted code lines. It is important to note
that no additional information is added to the original dataset (JIT-Defect4J). We only change the organization of
added and deleted code lines (using the changed block format). Similar to the JIT-Defect4) dataset, JIT-Block organizes
all commits in chronological order. Additionally, it is worth noting that due to the removal of certain characters (such
as comments or special characters) by Ni et al. [17] in a small number of code lines in JIT-Defect4), the script is
unable to match the line numbers for these code lines. Therefore, the commits that failed to match are removed,
totaling approximately 0.6% of the total number of commits. Specifically, 121 out of 21,839 training data commits
(approximately 0.5%) and 57 out of 5,480 testing data commits (approximately 1%) are removed. We confirm that
these removed commits do not contain defect-introducing commits, as defect-introducing commits are valuable in an
imbalanced dataset and should not be removed. For fair comparison, the corresponding commits are also removed

from the JIT-Defect4) dataset in all baseline replication and ablation experiments.

Original commit

/IE

JIT-Defectd) Commit id Git Api JIT-Block-Defect4]
Line number

> -
5—>@—> 4>glt\f =N —H—

\
\

\

pH

w

FIGURE 7 The process of refactoring JIT-Defect4) dataset

3.3 | The Extraction and Merging of Multi-Input Semantic Features

Recently, state-of-the-art JIT defect prediction methods commonly rely on pre-trained models for extracting semantic
features from the inputs [17, 25]. Pre-trained models offer the advantage of leveraging the knowledge acquired from
large-scale datasets. Consistent with prior research, this study employs CodeBERT [19], a widely adopted pre-trained
model that has been extensively utilized in various Natural Language Processing (NLP) [26] and Software Engineering
(SE) [20] tasks. Afterwards, the learned semantic features from each input are concatenated to form the multi-input

semantic features.
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The structure of the semantic feature extractor in JIT-Block is depicted in Fig.8. In JIT-Block, we refer to each input
as a "changed block union." It incorporates two types of information: the “commit message” and the “changed block”.
The commit message provides a description of the intentions behind the code changes made by the submitter. Please
note that JIT-Block has added a commit message in each Changed Block union. The purpose is to exchange information
between the commit message of a single commit and as many associated changes as possible. The changed block
refers to a continuous segment of added or deleted code lines. Additionally, the special token “[CLS]” is widely used
in classification tasks and is typically added at the beginning of each input [18]. Moreover, the special token “[SEP]”
is used to separate different code segments. In this study, we utilize [SEP] to delimit the different changed blocks.
The internal organization of each changed block is illustrated in Fig.9. The "Added line" and "Deleted line" represent
the code lines that are added and deleted in the commit, respectively. The special tokens “[ADD]” and “[DEL]" are
used to help the model distinguish between added and deleted code lines. After extracting the semantic features of
each "changed block union" using CodeBERT, the “[CLS]" token is considered as the representative semantic feature
of that changed block union. Subsequently, multiple such “changed block union” (the number of “change block union”
is a tunable parameter) are fed into the CodeBERT to generate embedded vectors that represent the semantic code
changes.

| Semantic Embedding |

Ge(w) CwEmle] wEEE Cw) e

CodeBERT

Concatenate

- . _/

(sem][er] - [o][msen[[er] - [en] [omm] [e] . [ox] .

[ Tokenization ]

i }

A changed block union

FIGURE 8 The structure of semantic feature extractor

A changed block

FIGURE 9 The internal organization of a changed block
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3.4 | Joint Feature Learning

As shown in Fig.6, after extracting the semantic features of all changed block union, the semantic features of each
changed block union are fused together. We experiment with different fusion methods, including taking the maximum,
average, sum, and direct concatenation. Ultimately, direct concatenation is found to be the most effective fusion
approach. To avoid the semantic features overpowering the expert features, similar to JIT-Fine, the approach proposed
by Yang et al. [27] is followed. A fully connected layer is utilized to increase the dimensionality of the expert features to
match the total semantic feature dimensionality. Since CodeBERT represents semantic embeddings in 768 dimensions,
the total semantic features have a dimensionality of nx 768 (where n is the number of changed block union), the expert
features are also increased to n x 768 dimensions. The total semantic feature vector is then concatenated with the

expert feature vector to generate the joint features and joint feature learning is performed.

The joint feature learning stage consists of two fully connected layers. In the first fully connected layer, we reduce
the dimensionality of the joint features to 768 dimensions, which are then fed into the second fully connected layer.
Subsequently, the joint features are further reduced to one dimension and passed through a SoftMax function to

obtain prediction scores. During the training phase, we fine-tune the aforementioned neural network.

3.5 | Defect prediction and localization

For the JIT-DP task, the joint features are used for classification prediction. For the JIT-DL task, JIT-Block leverages
CodeBERT to calculate the contribution of each token in each changed block union to the semantic representation
of the input, specifically, the contribution to the special token [CLS] in each change block union. In a given defect-
introducing commit, the contributions are summarized for each line, and all code lines are ranked based on their total
contributions (higher contribution leads to a higher rank). We hypothesize that JIT-Block’s defect localization strategy
is more effective than JIT-Fine because JIT-Fine only accepts single input, if the tokens associated with a defect code
line are not included in the single input of 512 tokens, the overall contribution of that defect code line may decrease,
potentially affecting the final defect code line localization results.

Following the previous work, we can obtain defect density for a given commit [21, 28], which can be calculated as
the ratio between the probability outputted by the model (Y (c)) and the total modified lines of that commit (#LOC(c)).

4 | EXPERIMENTAL SETTINGS

According to the research by Mclntosh et al.[21], the JIT defect prediction dataset exhibits temporal dependencies.
Therefore, in this study, we do not perform cross-validation to avoid using test data in the training process. To ensure
a fair comparison, no additional information is added to the JIT-Block-Defect4J dataset compared to the JIT-Defect4)
dataset. We use the same training parameters and strategies as JIT-Fine, and follow the same data splitting strategy.
Specifically, 80% of the commits from each project are used for training (60% as the training set and 20% as the
validation set), while the remaining 20% are used as the test set. To provide a comprehensive evaluation of our
model, in addition to using the evaluation metrics used in JIT-Fine, the Matthews correlation coefficient (MCC) is also
introduced as an additional metric, since MCC is a robust measure for assessing model performance on imbalanced
class datasets [29]. In this section, a brief introduction to the baseline models compared against will be provided,

along with a description of the evaluation metrics used for comparison.
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4.1 | Baselines

In order to accurately assess the performance of JIT-Block, we compare JIT-Block with six state-of-the-art JIT defect
prediction methods from previous research:LApredict [30],Deeper [27],DeeplIT [31],CC2Vec [32], JIT-Line [33], and
JIT-Fine [17].

e LApredict [30] uses the number of added code lines as a feature and employs a traditional logistic regression
classifier for JIT defect prediction task.

o Deeper [27] utilizes deep belief networks to learn expert features related to JIT defect prediction.

e DeeplIT [31] uses a convolutional neural network to capture the semantic representation of commit messages
and corresponding changed code.

e CC2Vec [32] employs a hierarchical attention mechanism and five comparative functions to capture the semantic
representation of changed code.

e JITLine [33] utilizes the DE-SMOTE algorithm, to handle the class imbalance issue and uses a random forest
model combined with token features and expert features for defect prediction. It also applies the Lime algorithm
to locate the defective code lines.

e JIT-Fine [17] uses CodeBERT to extract semantic features from the changed code and combines them with expert

features for defect prediction tasks and locate the defective code lines.

Unlike existing approaches, JIT-Block captures the change semantics based on changed blocks and effectively com-

bines multiple input change semantics for JIT-DP task and JIT-DL task.

4.2 | Evaluation Measures

We evaluate the JIT-Block model using two widely used evaluation metrics: effort-aware metrics and effort-agnostic
metrics.

Effort-agnostic metrics mean that software companies can examine the predictions of the defect prediction model
without considering the cost. We use three widely used evaluation metrics: F1-score, AUC [34, 27], and MCC [29].
These metrics are calculated based on the results of the confusion matrix. In the confusion matrix, TP (true positive)
represents the number of defect-introducing commits correctly predicted as defective, FP (false positive) represents
the number of clean commits incorrectly predicted as defective, FN (false negative) represents the number of defect-
introducing commits incorrectly predicted as clean, and TN (true negative) represents the number of clean commits
correctly predicted as clean. We use a threshold of 0.5 to distinguish between defect-introducing commit and clean

commit.

e F1l-score is a metric that combines precision and recall to provide an overall measure of model performance. It is

computed as

2 X Precision X Recall

1
Precision + Recall ()
e AUC (Area Under the Curve) is a metric used to evaluate the accuracy of a model at different thresholds. It is

computed based on the Receiver Operating Characteristic (ROC) curve, which illustrates the trade-off between

true positive rate and false positive rate. AUC values range from O to 1, with a value of 1 indicates perfect
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discrimination, while a value of 0.5 indicates random guessing.
e  MCC (Matthew's Correlation Coefficient) is a metric that comprehensively evaluates the performance of a binary
classification model. It takes into account TP, FP, TN, and FN, is computed as

TPXTN - FPxFN

2
N(TP+FP)Xx (TP+FN)x (TN+FP) x (TN+FN) .

Effort-aware metrics consider evaluating the model’s performance under a certain amount of effort. Similar to
previous work [33, 17], we use 20% of the total lines of code as the representative quantity for the inspection effort.

For the JIT-DP task, we use the following performance metrics:

e Recall@20%Effort (R@20%E). It measures the proportion between defect-introducing commits that can be dis-
covered given 20% of the total lines of code with the total number of commits.

o Effort@20%Recall. (E@20%R). It measures the amount of effort that developers need to inspect when identifying
20% of the total defect-introducing commits.

e P,y It compares the quality of inspection work based on the model’s predicted results with the ideal inspection
work. To compute this measure, we need two additional prediction models: the optimal model and the worst

model. It computed as

Area(Optimal) — Area(Our)

- 3
Area(Optimal) — Area(Worst) ©)

where Area (Our) represents the area under the curve corresponding to our model. The optimal model and our
model rank the commits in descending order of defect density, while the worst model ranks the commits in

ascending order of defect density. For a given commit, the defect density is calculated as

Y (m)

#LOC(c) @

The value of P,,; ranges between 0 and 1, with a value closer to 1 indicating that the inspection work based on

the model’s predicted results is closer to the ideal scenario.

For the JIT-DL task, we use the following performance metrics:

e Top-N Accuracy. It measures the proportion of actual defect code lines included in the top N predictions made
by the model (similar to JIT-Fine, we use N=5, 10).

e Recall@20%Effort;;,. (R@20%E;; ). It measures the proportion of defect code lines that can be detected when
reviewing 20% of the total code lines in a given defect-introducing commit. A higher Recall@20%Effort,;, indi-
cates that code reviewers can detect more defect code lines with the same amount of effort.

o Effort@20%Recall;;,. (E@20%R;;,.). It quantifies the proportion of code lines that code reviewers need to review
in order to detect 20% of the defect code lines in a given defect commit. A lower E@Q20%R/;,. implies that code
reviewers require less effort to identify 20% of the total defect code lines.

e Initial False Alarm (IFA). It calculates the number of clean code lines that code reviewers need to inspect be-
fore finding the first defect code line. A lower IFA value indicates that code reviewers spend less effort before
identifying the first defect code line.
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5 | EXPERIMENTAL RESULTS

To evaluate the performance of the JIT-Block model and investigate the effectiveness of input using changed block
as unit, we address the following three questions.

1. For the JIT-DP task, how does the performance of JIT-Block compare to the six baseline models?
For the JIT-DL task, how does the performance of JIT-Block compare to the two existing state-of-the-art JIT-DL
methods?

3. Isinput that using changed block as unit more effective compared to the traditional form of input?

By answering these questions, we aim to evaluate the effectiveness of the JIT-Block model in JIT-DP task and JIT-
DL task and assess the advantages of using changed block unit as input representation.In the next three sets of
experiments, we will consistently set the epoch to 50, the training batch size to 12, and the evaluation batch size to
128. For detailed information on other parameters, please refer to the provided source code.

51 | JIT-DP Task

Objective. Previous works have suffered from the issues of underutilized datasets or inputs that are unrelated to code
changes. To the best of our knowledge, JIT-Block is the first JIT defect prediction method that combines multiple input
semantics specifically designed for code changes. Therefore, in this experiment, we investigate the performance of
JIT-Block compared to six baselines in the JIT-DP task.

Experimental Design. For the JIT-DP task, we compare JIT-Block with six state-of-the-art baseline models: LApredict
[30], Deeper [27], DeepJIT [31], CC2Vec [32], JITLine [33], and JITFine [17], using six evaluation metrics including
effort-agnostic metrics (F1, AUC, MCC) and effort-aware metrics (R@20%E, E@20%R, P,,;). All replication exper-
iments are conducted using the publicly available source code provided by the authors of the baselines, and the
experimental parameters are set according to the recommendations of the baseline authors. Additionally, due to the
multi-input capability of JIT-Block, we investigate the model performance of JIT-Block with varying numbers of inputs
(ranging from 1 to 6).

Results. The results are presented in Table.1, where the optimal values for each metric are highlighted in bold. For the
JIT-DP task, JIT-Block model outperforms the six baseline models across all metrics, including both effort-agnostic
and effort-aware measures. Specifically, in terms of effort-agnostic metrics, JIT-Block achieves an F1 score of 0.531,
showing a substantial improvement of 37%-800% compared to the baselines. The MCC value of 0.494 represents a
notable improvement of 45%-384%, while the AUC score of 0.883 demonstrates an improvement of 1.5%-27%. Re-
garding effort-aware metrics, JIT-Block achieves an R@20%E of 0.76, outperforming the baselines by 4%-21%. The
E@20%R value of 0.009 indicates a considerable improvement of 30%-57%, while the P,,, value of 0.914 demon-
strates an enhancement of 0.3%-12%. Importantly, it is worth highlighting the improvements relative to JIT-Fine, as
both JIT-Block and JIT-Fine utilize Code-BERT for semantic extraction and incorporate expert features. However,
JIT-Block’s advantage lies in its ability to accept multiple inputs and its unique organization using changed blocks as
unit. Notably, JIT-Block achieves improvements of 37%, 45%, 1.5%, 4%, 30%, and 0.3% over JIT-Fine in the six JIT-DP
metrics (F1, MCC, AUC, R@20%E, E@20%R, P,,), respectively. These findings validate our hypothesis that increasing
the number of inputs and effectively merging them through joint learning can enhance dataset utilization and improve
model performance.

We investigate how the performance of the JIT-Block model in the JIT-DP task changes with varying input num-
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TABLE 1 Defect prediction results of JIT-Block compared against six baselines

Method F1 AUC MCC R@20%E E@20%R P,

LApredict 0.059 0.694 0.102 0.625 0.02 0.814
Deeper 0.246 0.682 0.159 0.638 0.021 0.827
DeeplIT 0295 0.775 0.253 0.676 0.014 0.859
CC2Vec 0.248 0.791 0.185 0.676 0.014 0.861
JITLine 0.261 0.802 0.303 0.705 0.015 0.883
JIT-Fine 0.388 0.87 0.34 0.731 0.013 0.911
JIT-Blocks 0.531 0.883 0.494 0.76 0.009 0.914

R@20%E: Recall@20%Effort; E@20%R: Effort@20%Recall. The subscript number in JIT-Block
corresponds to the number of inputs used. JIT-Blocks indicates that it uses 5 inputs and all
subsequent tables follow the same rule.

bers. Table.2 presents the performance of the JIT-Block model with input numbers ranging from 1 to 6 and the best
performances are highlighted in bold. It can be observed that as the input number increases from 1 to 5, both F1
and MCC gradually increase. The peak values of F1 (0.531) and MCC (0.494) are achieved when the input number
is 5. Furthermore, as the input number increases from 1 to 4, all six metrics show a gradual improvement. This indi-
cates that JIT-Block exhibits good scalability and can adapt well to variations in JIT defect prediction datasets. It can
adapt to different input lengths to achieve optimal performance for a given dataset. Additionally, it can be anticipated
that, under effective combination, the model’s performance will improve with increasing input length up to a certain
threshold, reaching its peak at a specific input length. However, once the threshold is exceeded (in this experiment,
the threshold is 5), the model’s performance tends to decrease with further increase in input length. This decrease in
performance may be attributed to overfitting, which weakens the model’s generalization ability.

TABLE 2 The performance of JIT-Block on JIT-DP using different numbers of inputs

F1 AUC MCC R@20%E E@20%R P,

JIT-Block; 0401 0.846 0.34 0.758 0.01 0.902
JIT-Block, 045 0864 0.394 0.779 0.009 0.915
JIT-Blocks 0481 0871 043 0.794 0.009 0.926
JIT-Blockg 0.503 0.884 0.456 0.811 0.009 0.928
JIT-Blocks 0.531 0.883 0.494 0.76 0.009 0.914
JIT-Blocks 0473 0.881 043 0.796 0.012 0.923

Conclusion. For the JIT-DP task, JIT-Block not only outperforms all six state-of-the-art baseline models in performance

but also demonstrates excellent scalability.
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52 | JIT-DL Task

Objective. Fine-grained defect localization can help code reviewers save more costs. JIT-Line [33] utilizes token
features and Lime algorithm for defect code line localization, while JIT-Fine [17] uses attention scores provided by
CodeBERT for defect code line localization. Similarly to JIT-Fine, JIT-Block also utilizes attention scores provided by
CodeBERT for JIT-DP task. However, the difference lies in the broader defect localization perspective of JIT-Block, as
it can accept multiple inputs. This allows JIT-Block to provide attention scores for a larger number of tokens. Therefore,

in this experiment, we investigate the performance of JIT-Block compared to two baselines in the JIT-DP task.

Experimental Design. For the JIT-DL task, we select two baseline models, JITLine [33] and JIT-Fine [17], which
have shown outstanding performance on the JIT-DP task. We reproduce the baseline experiments using the source
code provided by the authors and the experiment parameters recommended by the authors. Additionally, we also
investigate the performance of JIT-Block on the JIT-DL task with varying input numbers (from 1 to 6).

Results. The experimental results are shown in Table.3 and the best performances are highlighted in bold. JIT-Block
achieves a TOP-10-ACC value of 0.236, which represents an improvement of 14%-140% compared to the base-
lines. The TOP-5-ACC value of JIT-Block is 0.235, showing an improvement of 11%-125% compared to the baselines.
The IFA value of JIT-Block is 10.412, indicating an improvement of 22%-56% compared to the baselines. JIT-Block
achieves the best performance in these three metrics. However, JIT-Block perform lower than the top-performing
baseline models in terms of Recall@20%Effortline and Effort@20%Locline. It shows a decrease of 3% and 14% relative
to JIT-Fine, respectively. This suggests that as the input length increases, the model has a broader view of JIT-DL lo-
calization, however, on average, locating the defective code lines becomes more challenging. Nevertheless, JIT-Block
achieved the best results in three out of the five metrics in the JIT-DL task (TOP-10-ACC, TOP-5-ACC, IFA). This
indicates that the approach of combining multiple inputs has great potential in the JIT-DP task.

TABLE 3 Defect localization results of JIT-Block compared against two baselines

Method TOP-10-ACC  TOP-5-ACC  R@20%E;;,. E@20%R,,. IFA

JITLine 0.098 0.104 0.157 0.33 24.208
JIT-Fine 0.206 0.21 0.196 0.31 13.488
JIT-Blocks 0.235 0.235 0.19 0.356 10.412

TOP-10-ACC: TOP-10 Accuracy; TOP-5-ACC: TOP-5 Accuracy; R@20%E/;,.: Recall@20%Effort;;e;
E@ZO%R/,',,EZ Effort@20%RecaII/;,,e.

We investigate how the performance of JIT-Block in the JIT-DL task varies with the number of inputs (ranging
from 1 to 6). The specific results are shown in Table.4, with the best results highlighted in bold. It can be observed
that JIT-Block consistently outperforms JIT-Fine in the TOP-10-ACC, TOP-5-ACC, and IFA metrics. Although there
are some fluctuations, JIT-Block shows an increasing trend in the TOP-N-ACC (5 or 10) metrics as the number of
inputs increases. The Recall@20%Effortline metric slightly decreases with the increase in the number of inputs, and
overall, it is slightly lower than JIT-Fine. The IFA metric shows a decreasing trend with the increase in the number of
inputs, but it remains better than JIT-Fine. The Effort@20%Loc metric also shows a decreasing trend overall, and it
is consistently lower than JIT-Fine, which once again highlight the challenge of precisely locating the defective code
lines as the input length increases.

Conclusion. For the JIT-DL task, JIT-Block simultaneously exhibits its advantages (better TOP-10-ACC, TOP-5-ACC,
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TABLE 4 The performance of JIT-Block on JIT-DP using different numbers of inputs

TOP-10-ACC  TOP-5-ACC  R@20%E;;,, E@20%R;;,e IFA

JIT-Block; 0.228 0.235 0.210 0.330 8.469
JIT-Blocky 0.228 0.233 0.187 0.779 0.350
JIT-Blocks 0.236 0.231 0.194 0.794 0.345
JIT-Blocks 0.211 0.214 0.196 0.811 0.352
JIT-Blocks 0.235 0.235 0.190 0.76 0.356
JIT-Blocke 0.240 0.253 0.187 0.363 12.873

and IFA) and limitations (lower Recall@20%E;;,. and Effort@20%R;¢).

5.3 | The effectiveness of using changed block

Objective. JIT-Fine [17] utilizes semantic information from inputs that lack relative positional information for JIT
defect prediction task. In contrast, JIT-Block organizes inputs in the form of changed blocks, preserving relative
positional information. JIT-Block outperforms the baseline model significantly in the JIT-DP task and demonstrates
certain advantages in the JIT-DL task (achieving the best results in terms of TOP-10-ACC, TOP-5-ACC, and IFA). In
this experiment, we aim to investigate how the performance of the JIT-Block model would be affected by directly
increasing the quantity of inputs that lack relative positional information in the JIT-DP task, without organizing them
as changed blocks.

Experimental Design. We directly increase the quantity of traditional inputs (inputs lacking relative positional infor-
mation). To ensure a fair comparison. We compare the results using three metrics: F1, AUC, and MCC, considering
the same number of inputs in both cases (5 inputs).

Results. The experimental results are shown in Table.5 and the best performances are highlighted in bold. It can
be observed that the inputs organized in the form of changed blocks achieve the best results in terms of F1 and
MCC, with improvements of 6% and 10% respectively, compared to using traditional inputs lacking relative positional
information. However, the AUC values are slightly lower by 0.3% compared to the traditional input form. Considering
these three metrics, we conclude that organizing inputs in the form of changed blocks allows the model to correctly
differentiate more positive and negative examples (as indicated by higher F1 and MCC values). However, compared
to the regular input form, it assigns slightly lower scores to correctly predicted positive examples, and higher scores
to correctly predicted negative examples (which is why the AUC value is slightly lower). One possible reason for this
observation is that organizing inputs as changed block, although facilitating the learning of semantic changes (as it
retains relative positional information for added and deleted code), increases the difficulty for the model to distinguish
code changes. For example, in "changed block 2" in Fig.3, the deleted code line and the added code line that follow
it form a changed block. However, the similarity between the deleted code line and the added code line is high (as
the added code is based on modifications to the deleted code). This limited variation within many changed blocks
makes it challenging for the model to differentiate change samples effectively, resulting in slightly lower scores for
correctly predicted positive examples, and higher scores for correctly predicted negative examples. Conversely, this
issue does not exist in the traditional input form, leading to a higher AUC value for JIT-Block*. However, considering

the improvements in F1 and MCC values with the use of changed block, we believe that organizing inputs in the form
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of changed blocks still holds potential.

TABLE 5 Experimental Comparison of JIT-Block using changed block input organization and traditional input
F1 AUC MCC

JIT-Blocks* 0.501 0.886 0.451
JIT-Blocks 0.531 0.883 0494

JIT-Block* represents the JIT-Block model using the tradi-
tional input.

Conclusion. The inputs that retain relative position information (i.e., organized in changed block format) compared to
traditional inputs allows the model to learn change semantics more easily, leading to more accurate prediction results
(higher F1, MCC). However, it slightly increases the difficulty in distinguishing changes (lower AUC). The experiments
indicate that relative position information is a valuable feature to consider for the JIT-DP task.

6 | THREATS TO VALIDITY

Internal Threats. In order to minimize errors while replicating the baselines, the source code shared by the authors
on GitHub is directly used along with their recommended hyperparameter settings. Additionally, as JIT-Defect4) [17]
is refactored to create JIT-Block-Defect4), approximately 0.6% of the commits are removed (as explained in Section
3). To mitigate the impact of this action, the same commits are also removed from JIT-Defect4) while replicating the
baseline experiments. Moreover, to maintain the number of defect-introducing commits in the dataset, it is manually
confirmed that the removed commits do not include any defect-introducing commits.

External Threats. The JIT-Block-Defect4) dataset is a refactored version of JIT-Defect4) [17], and it shares the same
limitations and biases of the original dataset. Specifically, the projects included in both datasets are primarily written
in the Java programming language, and other programming languages such as C/C++ and Python are not consid-
ered. Another issue that needs to be discussed is that JIT-Block may require retraining to predict commits for a new
software project. This could potentially make JIT-Block less practical. However, JIT-Block relies on a pre-trained code
representation model to accomplish JIT defect prediction tasks. This allows it to leverage common knowledge learned
by the pre-trained model. When predicting new changes in a new software project, we can extract expert features
based on existing automated methods. Subsequently, we can fine-tune the model using a small amount of existing
commits, reducing the required training data and training time. Additionally, in the scenario of predicting changes in
a completely new software project without any available historical commit data, we can use the commit data from
previously developed projects by the same software development team to train the model. Then, we can use this
trained model to predict changes in the new project. Furthermore, if none of the mentioned information is available,
we can attempt a zero-shot approach, as erroneous changes might share certain similarities. We believe that these
methods can alleviate the problem to some extent.

7 | RELATED WORKS

In the past, researchers typically used a training from scratch approach to train JIT defect prediction models. Kamei

et al. [21] proposed 14 change-level features that have been widely used in subsequent works. Relying on Kamei's
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work, Yang et al. [27] first constructed the Deeper model using deep belief networks to learn change-level features.
In subsequent works, they achieved promising results by using ensemble learning to learn change-level features [35].
In particular, unlike using supervised learning methods, Liu et al. proposed an unsupervised learning approach to ac-
complish JIT defect prediction tasks. Later, Chen et al. [36] treated the JIT defect prediction task as a multi-objective
optimization problem and used evolutionary algorithms to select a set of effective features. Cabral et al. [37] pro-
vided a novel sampling method to address the issues of validation delay and class imbalance in JIT defect prediction.
Following this, Hoang et al. [31] attempted to use modern advanced deep learning models for JIT defect prediction
and proposed DeeplIT. DeeplIT utilized convolutional neural networks to automatically extract features from commit
messages and changed code. Furthermore, in their subsequent work, Hoang et al. [32] introduced CC2Vec, which
leverages hierarchical attention mechanisms and designed comparison functions to automatically extract high-level
features from change code and commit messages for JIT defect prediction. They also demonstrated that CC2Vec can
be combined with DeeplIT (i.e., using CC2Vec to learn the features extracted by DeeplIT), achieving state-of-the-art
results compared to previous works. However, Pornprasit et al. [33] pointed out an error in the JIT defect prediction
experiments with CC2Vec, where the test set was misused in the training set. They proposed JITLine, which uses ran-
dom forests to learn expert features and combines token features for defect prediction, followed by using the Lime

algorithm for defect localization.

Recently, fine-tuning existing pre-trained models has achieved state-of-the-art performance in both JIT-DP and
JIT-DL tasks. Ni et al. [17] introduced JIT-Fine, which utilizes CodeBERT to extract semantic features from changed
code combined with the 14 expert features proposed by Kamei et al. [21] for JIT defect prediction and employs

attention mechanisms for defect localization.

In contrast to previous works, JIT-Block is the first JIT defect prediction method that combines multiple input
semantics specifically designed for code changes. Our work emphasizes the importance of input quantity and retaining
the relative positional information of added and deleted code lines in the inputs.

8 | CONCLUSION AND FUTURE WORK

We propose a novel JIT defect prediction method called JIT-Block, which is based on the combination of multiple input
semantics using changed block as unit. JIT-Block replaces the traditional inputs that lack relative position information
with inputs that retain the positional information. It then leverages the combined semantics to perform JIT defect pre-
diction tasks (JIT-DP) and JIT defect localization tasks (JIT-DL). To validate the effectiveness of JIT-Block, we refactor
the JIT-Defect4) dataset to create the JIT-Block-Defect4) dataset. In our experiments, we compare JIT-Block against
six baseline methods using 11 performance metrics. The results demonstrate that JIT-Block outperforms all baseline
methods comprehensively in JIT-DP task, achieving better performance in three metrics compared to previous meth-
ods. In our ablation experiments, the advantages of retaining relative positional information in the inputs compared
to traditional inputs are showcased.

Our future work involves exploring the possibility of more effective methods for combining multiple input se-
mantics to further enhance JIT-Block’s performance. We will also address the limitations of JIT-Block in JIT-DL task
and investigate ways to overcome them. Additionally, we plan to evaluate our method using datasets from other

programming languages to further validate its applicability and generalization.
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