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Abstract—Code summarization aims to automatically generate
natural language descriptions for code, and has become a rapidly
expanding research area in the past decades. Unfortunately,
existing approaches mainly focus on the “one-to-one” mapping
from methods to short descriptions, which hinders them from
becoming practical tools: 1) The program context is ignored,
so they have difficulty in predicting keywords outside the tar-
get method; 2) They are typically trained to generate brief
function descriptions with only one sentence in length, and
therefore have difficulty in providing specific information. These
drawbacks are partially due to the limitations of public code
summarization datasets. In this paper, we first build a large
code summarization dataset including different code contexts
and summary content annotations, and then propose a deep
learning framework that learns to generate structured code sum-
maries from hybrid program context, named StructCodeSum.
It provides both an LLM-based approach and a lightweight
approach which are suitable for different scenarios. Given a
target method, StructCodeSum predicts its function description,
return description, parameter description, and usage description
through hybrid code context, and ultimately builds a Javadoc-
style code summary. The hybrid code context consists of path
context, class context, documentation context and call context of
the target method. Extensive experimental results demonstrate:
1) The hybrid context covers more than 70% of the summary
tokens and significantly boosts the model performance; 2) When
generating function descriptions, StructCodeSum outperforms
the state-of-the-art approaches by a large margin; 3) According
to human evaluation, the quality of the structured summaries
generated by our approach is better than the documentation
generated by Code Llama.

Index Terms—Code summarization, Program comprehension,
Deep learning.

I. INTRODUCTION

EXISTING studies have shown that developers spend
more than half of their time on program comprehension

activities during software development and maintenance [1, 2].
To alleviate the developers’ cognitive efforts in comprehending
programs, a text summary accompanying the source code has
been proven to be useful [3]. High-quality code summaries can
not only help developers understand programs, but also benefit
important tasks like code search [4–6] and code categorization
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[7]. However, code summaries are often missing, incomplete,
or outdated in practice due to the huge effort needed in
commenting and documenting source codes as well as the
rapid update of the software. Code summarization aims to
automatically generate natural language descriptions for code,
and has become a rapidly expanding research area in the past
decades. Leading approaches to code summarization mainly
refer to the encoder-decoder framework from neural machine
translation, which encode code tokens or structures to latent
representations and then use a decoder with attention mech-
anism to generate code summaries from such representations
[8–17]. Recently, large language models (LLMs) pre-trained
on massive unlabelled corpora of code are also skilled in code
summarization [18–22]. They are typically trained using auto-
regressive objective for token generation, and can generate
code summaries either in a zero-shot manner [22] or through
in-context learning without any parameter update [23, 24], i.e.,
by providing several demonstrations of training examples in
the input prompt.

Although these code summarization methods are good at
extracting key information within source codes and generating
fluent natural language summaries, they still exist two major
issues:

1) In terms of model input, almost all neural models
generate summary only according to the given target
code snippet itself, e.g., a method. However, in practice,
the functionality and behavior of the code are determined
by the interactions of different subroutines in a software
project. Therefore, the content of the desired summary
may not directly appear in the target code but in its
program context. Although code context is crucial for
code summarization, there is currently a lack of study on
utilizing and analyzing different types of code contexts.
Existing context-aware methods only consider some
specific code contexts, such as class or file context [25],
call context [26], and randomly extracted project context
[27], with limited improvements against conventional
approaches that do not use code context.

2) In terms of model output, existing deep learning-based
models typically aim to generate brief function de-
scriptions for codes. However, developers often need
to know more detailed and specific information about
the target codes, such as the meaning and usage of
method parameters and return values. In contrast, the
generated summaries from most neural models are not
rich, specific, and standardized in content, therefore
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lacking usefulness. On the other hand, although LLMs
are intrinsically able to predict full method documenta-
tion, they suffer from hallucination [28] and their outputs
have not been quantitatively evaluated yet.

One of the main causes is that the widely-used code summa-
rization datasets do not contain program context as well as
different types of summary content for each target code. In
most public datasets, the input of each example is a method,
and the expected output is the first sentence of its documenta-
tion comment (doc comment) [10, 11, 29], which makes the
follow-up studies focus on the “one-to-one” mapping problem
between code and summary. In addition, due to the varied
quality of open source projects, the doc comments are often
not compliant with specifications such as Javadoc. Thus, the
first sentence of the documentation may not be the expected
target to predict, which becomes a potential threat to validity.
For example, in the dataset built by this work, more than 25%
of the doc comments do not start with an overall function
description (e.g., start with a parameter description or example
code instead).

To address the above issues, we first build a large code
summarization dataset that includes different code contexts
and summary content annotations to support model training
and evaluation. It is extracted from the Java projects se-
lected by CodeSearchNet [30] from GitHub. In this dataset,
available code contexts include path contexts, class contexts,
call contexts, and documentation contexts. The summaries
are split and categorized into function descriptions, return
descriptions, parameter descriptions, exception descriptions,
and usage descriptions. The dataset contains 620,226 exam-
ples of <method, contexts, annotated documentation> af-
ter exhaustive preprocessing and filtering. Then we propose
StructCodeSum, a deep learning framework that learns to
generate structured code summaries from hybrid code context.
It provides an LLM-based approach and a lightweight ap-
proach for this task, which differ in their backbone models but
share a unified workflow. In this framework, a target method
and its hybrid code context are converted to instruction as
model input, and the underlying model is trained to generate
different descriptions through instruction tuning [31]. During
inference, the instructions are used to query the model for
the desired descriptions of the target method, and a structured
code summary in Javadoc style is finally built. The example
in Fig. 1 shows the differences between StructCodeSum and
previous work in terms of model input and output.

We evaluate StructCodeSum through extensive experiments
on the constructed dataset and analyze the impact of different
code contexts on summary generation. Statistical analysis
shows that our hybrid code context covers more than 70%
of the tokens in the code summary, while the target method
itself only covers about 36%. StructCodeSum significantly out-
performs the state-of-the-art approaches in generating function
descriptions, and the structured code summaries provided by
StructCodeSum have higher quality than the documentation
generated by the LLM baseline. In addition, we find that
our lightweight approach is much faster and cheaper than our
LLM-based approach without sacrificing much accuracy.

The contributions of this work are as follows.

1) We build a new code summarization dataset with various
code contexts and summary content annotations, which
may support future studies.

2) We propose StructCodeSum, the first neural code sum-
marization framework that learns to generate structured
code summaries from hybrid code context. It success-
fully combines the advantages of both deep learning and
template-based methods.

3) We provide both an LLM-based solution and a
lightweight solution in StructCodeSum. They are suit-
able for different scenarios when considering computa-
tional costs.

4) Extensive experiments show that the hybrid code context
we adopt effectively boosts the model performance on
code summarization, and StructCodeSum significantly
surpasses the state-of-the-art models.

II. RELATED WORK

Most of the recent studies on code summarization are
data-driven and deep learning-based, applying different neural
networks to represent source codes. These approaches can
be further divided into four categories: to better learn code
representations, to improve performance with auxiliary tasks,
to utilize external knowledge of the target code, and to adopt
LLMs.

A. Learning Code Representations

Iyer et al. [32] propose the first neural code summarization
model. They use an RNN with an attention mechanism to
produce summaries directly from token embeddings of codes.
Allamanis et al. [33] propose a convolutional attention network
to encode token sequences and generate function name-like
summaries. Hu et al. [34] customize a traversal method called
SBT to serialize ASTs and then apply a standard Seq2Seq
model. Alon et al. [35] represent source code as a set of AST
paths and encode them via RNN, and use attention to focus on
relevant paths during decoding. Wan et al. [9] employ a Tree-
RNN to model AST and an RNN to model token sequence
of code, and then integrate their attention vectors to generate
summaries. They also exploit reinforcement learning to cope
with exposure bias. LeClair et al. [36] and Hu et al. [10] both
combine the encoding results of SBT and token sequence to
generate code summaries. There are also increased research
interests in learning graph representations of code through
GNN or modified Transformer. Graph representations of code
can be built from AST [13, 37], dataflow graph [17, 38],
or the more complicated code property graph [14]. Another
branch of study aims to improve code summarization through
hierarchical code representations [39–41].

B. Multi-task Learning Approaches

Different code-related tasks are possible to share their
knowledge to improve them jointly. Chen et al. [4] propose a
Bimodal Variational Auto Encoder to project natural language
and code into a common semantic space, which could be used
for both code retrieval and summarization tasks. In [5], the
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Path Context 
Package Name: org.pf4j.asm
Class Name: ExtensionInfo

Class Context 
Class Attributes:
Logger log
String className
int ordinal
List plugins
List points
Sibling Methods:
public List<String> getPlugins()
public List<String> getPoints()
private ExtensionInfo(String className)
public String getClassName()
public int getOrdinal()
public static ExtensionInfo load(String

className, ClassLoader classLoader)

Call Context 
Called In:
private ExtensionInfo getExtensionInfo(String className, ClassLoader classLoader){…}

Documentation Context 
Relevant Documentation Found from the Project:

Human-written Summary

Method to Summarize

Information used by previous work

Information used by our approach

StructCodeSum:
Loads an extension info from the given class loader.
This method can be used in {@code getExtensionInfo}: get extension info for a class name.
@param className the name of the class , which cannot be null.
@param classLoader class loader to use.
@return the extension info of the extension annotation or null, if the class 

does not have an extension annotation.

Generated Summary
CodeBERT: Loads an extension from a class loader.

Fig. 1: An example to show the differences between previous work and StructCodeSum

authors investigate a novel perspective of code annotation for
code retrieval, where a code annotation model is trained to
generate code summaries that can be leveraged by a code
retrieval model to better distinguish relevant codes. With dual
learning, code summarization and generation models can be
trained simultaneously to exploit their duality [6, 42]. Xie et
al. [43] exploit the task of method name prediction to improve
code summarization.

C. Utilizing External Knowledge

This type of work leverages information outside the target
code snippet to help generate its summary. Zhang et al. [44]
propose a retrieval-based neural code summarization approach
where the neural model takes the most similar code snippets
retrieved from the training set as extra inputs. Except for
the similar code snippet, Wei et al. [15] further encode its
paired comment (called exemplar) and the SBT sequence of
the target code. Their work is later improved by Li et al.
[45] by learning the edits between the retrieved code and
the target code to better revise the exemplar. Zhou et al.
[46] propose a code summarization framework based on meta-
learning and code retrieval, which aims to optimize a unique
code summarizer for each target code snippet using its similar
examples as the few-shot training set. Haque et al. [25] use
the file context, i.e., the methods within the same file as the
target code, as additional input of the target code. Bansal et al.
[27] encode randomly selected files from the project to provide
project-level context for code summarization. Liu et al. [26]
propose a code summarization model using the knowledge of
the call dependencies between the target code and its related

methods. Aghamohammadi et al. [47] generate summaries for
event-driven programs by analyzing the dynamic call graphs
via PageRank and applying a pre-trained code summarization
model.

D. LLMs for Programming Languages

LLMs, which often contain billions of parameters and
are pre-trained on massive unlabelled corpora, have achieved
great success in various code-related tasks. They can be
categorized into encoder-only models such as CodeBERT
[48, 49], encoder-decoder models such as CodeT5 [19, 50]
and PLBART [51], and decoder-only models such as Codex
[18] and GPT [21, 52]. Due to the strong ability of decoder-
only LLMs in both natural language generation and in-context
learning, they can be queried to generate code summaries
without fine-tuning by feeding them proper prompts [22–24].
However, there is still a lack of research on how to exploit
the strength of LLMs to accurately generate structured code
summaries. In this study, we adopt Code Llama [20], an open-
source LLM designed for code, as the backbone model of
StructCodeSum for empirical study.

E. Public Code Summarization Datasets

One of the most important factors affecting the performance
and evaluation of deep learning models is the dataset. Popular
code summarization datasets are crawled from GitHub1 or
Stackoverflow2. Since the quality of open-source projects

1https://github.com/
2https://stackoverflow.com/

https://github.com/
https://stackoverflow.com/
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TABLE I: Public code summarization datasets

Literature Language Input Output Cross-Project Duplicates Removed

Iyer et al. [32] C# Code snippet Post title % %

SQL Query Post title % %

Hu et al. [34] Java Method The first sentence of the documentation % %

Hu et al.[11] Java Method The first sentence of the documentation % %

Java API Sequence The first sentence of the documentation % %

LeClair et al. [29] Java Method The first sentence of the documentation ! !

Li et al. [54] Java Class The first sentence of the documentation ! !

Barone et al. [55] Python Method Documentation ! %

Husain et al. [30] Multiple Method The first paragraph of the documentation % !

Lu et al. [56] Multiple Method The first paragraph of the documentation % !

This work Java Method + Contexts Documentation with content annotations ! !

Clone from 
GitHub

CodeSearchNet

Projects

PostgreSQL 
Database

Java Files

Project URLs

Identify 
Projects

XML Files

Extract 
Files

Parse by SrcML

Repositories

Packages

Java Files

Call 
Relations

Import 
RelationsClasses

Methods

Attributes

Extract 
Entities

Store

Methods

Code Filters

Clone 
Detector

SATD 
Detector

Dirty 
Example 

Filter

Queries

Documented 
Methods

Contextualized and 
Documented Methods

Training
Set

Validation
Set

Test
Set

Split

Queries

Split & Filter 
Doc Comments

Fig. 2: Overall process to build the dataset

varies, there are many noisy elements in these datasets [53].
Furthermore, the input and output of the examples in these
datasets are too simple to train a practical code summarization
model, as described in Section I. These motivate us to build a
new dataset for code summarization. Table I shows the main
characteristics of the previous datasets and ours, where Cross-
Project denotes whether the training, validation, and test sets
are split by project.

III. DATASET PREPARATION

A. Data Collection & Preliminary Filtering

Our corpus is extracted from the Java projects selected
by CodeSearchNet [30], which are originally collected from
GitHub according to popularity (stars and forks) and license.
CodeSearchNet is one of the most widely-used benchmarks
for both code search and code summarization, and has been

used for pre-training several popular programming language
models [48–50], so we believe this is a good dataset to start
with. The overall process of building our dataset is shown in
Fig. 2. We first obtain the repository URLs of all Java projects
in CodeSearchNet, and then use git clone to download
the latest versions of the repositories (as of March 1, 2022).
After that, we use SrcML [57] to perform static analysis
on the source code files and convert them into XML files.
Xpath is then used to obtain specific data such as methods,
documentation, classes, call relations, and package names.
These data are stored in a PostgreSQL database, followed by
preliminary filtering of the methods:

1) Remove the methods with no or empty documentation.
2) Remove (near) duplicate methods using the duplication

detector proposed by Allamanis [58].
3) Remove the methods containing self-admitted technical
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debts (SATD) using the SATD detector proposed by Liu
et al. [59].

4) Remove the methods with less than two statements.
5) If a method signature contains the keyword “test”, this

method is considered as test code and removed.
6) If a doc comment contains the keyword “generated”, this

method is considered as automatically generated [60]
and removed.

For each of the remaining methods, we use SQL queries
to obtain its different contexts, including its package name,
class signature, class attributes, siblings (neighboring methods
within its enclosing class), callees (methods called by it), and
callers (methods that call it).

B. Splitting Doc Comments

According to Javadoc guidance3, a doc comment is made
up of several blocks describing different aspects of the code.
The first block should be an overall description of the method,
starting with a short summary sentence, while each subsequent
block should start with a block tag indicating its content
type, e.g., @param, @return, @exception. Unfortunately,
due to varied project quality, most doc comments on GitHub
do not conform to certain specifications, which are usually
incomplete such as missing necessary tags. On the other hand,
not everything in the documentation is suitable for training and
evaluating neural models. Therefore, we design a set of rules
to identify different types of elements within doc comments
and choose a part of them to build our dataset for structured
code summarization.

1) Categorize Untagged Sentences: Given a doc comment,
we first split it into blocks by existing Javadoc tags. A block
is then split into a sequence of sentences so that we can
check their respective content type. For each sentence, we
use heuristics to determine which of the following contents
it belongs:

• Example code
• SATD description
• Return description
• Exception description
• Usage description
• Summary sentence

Detailed information can be found in Appendix A. To avoid
confusion, we call the summary sentence as the function
description of a method.

2) Preprocessing and Filtering: With the help of existing
Javadoc tags and the rules above, we pick the function, usage,
parameter, exception, and return descriptions from the code
documentation to build the dataset. After that, to make these
descriptions more concise, natural, and friendly for evaluation,
the following preprocessings are performed:

1) Replace non-integer numbers and hash values with a
special token <num>.

2) Replace links with a special token <url>.
3) Supplementary notes appearing alongside brackets,

“e.g.” or “i.e.” are removed.

3https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html

4) HTML tags are removed.
5) The identifiers that appear in the doc comments are

further split into subtokens according to camelCase and
snake case.

6) Truncate each type of description to the first sentence.
7) The first word of a return description will be removed

if it is “return” or “returns”.
8) The first word of an exception description will be

removed if it is “throw” or “throws”.
9) If more than half of the words in a doc comment are

non-English, this example will be discarded.
After the above steps, the descriptions containing at least

three tokens are considered informative and kept, while the
ones with more than 30 tokens are truncated. If we cannot keep
any description of a method, this example will be discarded.
Note that a method may contain multiple parameters and
exceptions so the number of corresponding descriptions can
be more than one.

C. Dataset Statistics

Finally, we build a dataset with a total of 620,225 <method,
contexts, annotated documentation> triples. The overall statis-
tics of source codes in our dataset are shown in Table II,
where # denotes “The number of”. To avoid confusion, we
denote the method with documentation for prediction as the
target method. The count of calls in Table II is the sum
of callers and callees of a method. The overall statistics
of code descriptions are shown in Table III. We can see
from Table III that not all code documentation contains a
function description. Specifically, 25.2% of the documentation
in our dataset has no proper function description, whose
first sentences are identified as other types of descriptions or
filtered by the rules above. This suggests that directly using
the first sentence in the doc comment as the prediction target
is a potential threat to validity. Besides, 10.5% and 2.9%
of the return and exception descriptions are untagged and
identified by rules, respectively. Table A-I shows the statistics
of code lengths, context sizes, and description lengths after
preprocessing, where Std. denotes standard deviation. The
average length of parameter descriptions is the shortest among
the five types of descriptions, while that of usage descriptions
is the longest. According to the standard deviations, the target
method length, the number of callers of the target methods,
and the number of methods within the class vary greatly.

Through observations, we find that the exception and usage
descriptions are not suitable for model training and evaluation
due to both their data size and content. These two descriptions
always involve many implementation details of the program,
and are unpredictable in their original content. For example,
many exceptions can only be figured out during runtime,
and a usage description may be a note on corner cases,
e.g., “Do not use, for internal use only”. Actually, even
experienced developers can hardly predict these descriptions
only from the program contexts. As a result, exception and
usage descriptions are excluded from our experiments, but
we still keep them in the released dataset to support future
research.

https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html


APPENDIX OF LEARNING TO GENERATE STRUCTURED CODE SUMMARIES FROM HYBRID CODE CONTEXT 6

TABLE II: Overall statistics of source codes in our dataset

Target Methods Contexts of the Target Methods
# Methods # Tokens # Lines # Projects # Classes # Attributes # Class Methods # Calls

620,225 40,123,925 6,226,876 4,244 153,659 823,503 2,067,575 1,308,471

Target Method

Code-Based Context

Existing Doc

Project

Retriever

Code 
Similarity Convert Hybrid Code 

Context to Instruction

Solution 1: Pre-trained 
LLM

Use natural language 
prompts to build the 

instruction.

Solution 2: Lightweight 
Model

Use special tags to 
distinguish different types 

of contexts.

Encode by LLM or 
Lightweight Model

Solution 1:
Code Llama

Solution 2:
LSTM-Based Seq2Seq

Fig. 3: Input of StructCodeSum

TABLE III: Overall statistics of code descriptions in our
dataset

Name Count
# Documentation comments 620,225
# Function descriptions 464,143
# Parameter descriptions 388,952
# Methods with parameter descriptions 258,313
# Return descriptions (identified by rules) 334,300 (35,156)
# Exception descriptions (identified by rules) 61,359 (1,755)
# Methods with exception descriptions 44,749
# Usage descriptions 21,237
# Total words 11,197,594

We randomly split the dataset into training, validation, and
test sets in the proportions of 8:1:1 under different strategies:
by target method and by project. The former is a common
split setting, called mixed-project splitting. The latter is called
cross-project splitting, which makes it impossible for codes
from the same project to appear in both training and testing
data. Table A-II shows statistics of the dataset split by different
strategies. As seen, the counts of descriptions under different
settings have no significant difference. We make our dataset
publicly available4.

IV. PROPOSED APPROACH

A. Overview

StructCodeSum provides two solutions for generating struc-
tured code summaries: an LLM-based approach and a
lightweight approach. These two approaches mainly differ in
their backbone models where the former adopts Code Llama
[20] and the latter is built by LSTM. They have different inputs
but share a unified workflow. In general, the contexts fed into

4https://github.com/zy-zhou/StructCodeSum

the model can be divided into two types: code-based context
and documentation context. Code-based context includes the
attributes and sibling methods within the same class as the
target method, as well as its path. Documentation context
denotes the relevant documentation found in the project where
the target method is located. These inputs together with the
target method are converted to an instruction so that the model
can identify different contents, as illustrated in Fig. 3.

The overall training and testing process of StructCodeSum
is shown in Fig. 4, where the black and orange arrows denote
the information flows during training and testing, respectively.
Instead of learning to generate all descriptions of a method
at once, StructCodeSum treats the generation of each type of
description as a separate task and trains the underlying model
through instruction tuning [31], where specific instruction
templates are designed for different tasks. During testing,
the instructions are used to query the model to produce
corresponding descriptions for a given method. Moreover, we
use PageRank to select the most important caller of the target
method, and generate its function description to form the usage
description of the target method.

B. Model Input
1) Code-Based Context: Path context refers to the package

name of the target method plus the name of its enclosing
class. Packages are used to avoid naming conflicts and to
organize code files into different directories [61], which are
adopted by most programs. In practice, the package name
usually relates to the purpose of the classes in the package;
for example, it contains the names of function modules and
businesses. Therefore, package names may be able to abstract
the framework of a program in terms of functionality and
design, as well as assist developers in understanding and
maintaining software more efficiently [62].

https://github.com/zy-zhou/StructCodeSum
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Fig. 4: Training and testing process of StructCodeSum

Class context of the target method includes the attributes
and sibling methods within its enclosing class, which is poten-
tially helpful in characterizing the target method. However, it
is computationally expensive to feed full of these surrounding
contents into the neural model since a class can be very large.
On the other hand, there is no guarantee that the complete
class context can be obtained in practice. Therefore, we adopt a
compromising approach: extracting the names of the attributes
and the signatures of the sibling methods.

Since most of the target methods do not have a caller or
callee method (the median of the number of both callers and
callees is 0 as shown in Table A-I), combining the call context
with other types of contexts will cause the imbalance of model
input, which may negatively affect model training. Therefore,
the call context is not input to the model for training. We will
show how to use the call context to generate usage descriptions
in Section IV-C2.

2) Documentation Context: The doc comments within the
project of the target method are ready-made summaries of
its contexts, so they are quite helpful in generating the target
summary. However, irrelevant documentation can mislead the
model. To solve this issue, we search for the documented
method most similar to the target one from its project and use
its documentation as the documentation context. The retrieval
process is based on Vector Space Model (VSM) [63]. In detail,
each method in the project is represented as a vector via Term
Frequency-Inverse Document Frequency (TF-IDF). Since the
number of methods within a project is limited, the similarity
of two methods xi and xj can be efficiently computed by

cosine rather than a search engine:

cos(ri, rj) =
ri · rj

∥ri∥∥rj∥
∈ [−1, 1] (1)

where ri and rj are TF-IDF vectors of the two (tokenized)
methods. After obtaining the most similar method, we further
compute a character-level similarity between it and the target
method based on text edit distance following [44, 46]:

sim(xi,xj) = 1− dis(xi,xj)

max(|xi|, |xj |)
(2)

where dis denotes text edit distance. This fine-grained simi-
larity will be used by the model instead of the cosine value.

3) Convert Code Contexts to Instructions: LLMs are no-
table for their ability to understand natural language instruc-
tions [21, 31]. Therefore, to build the input for Code Llama,
we use natural language prompts to organize the above code
contexts along with the target method, as detailed in Appendix
B1. For the lightweight model, we instead insert special tags
into the subtoken sequence of the input contexts to indicate
different contents, as detailed in Appendix B2.

C. Learning to Generate Structured Code Summaries

1) Training by Instructions: A straightforward way for
learning to generate structured code summaries is to concate-
nate different descriptions of a method into a single summary
and treat it as the target sequence for training. But this is
problematic due to the following reasons. First, a method
may not have some types of descriptions either because the
documentation is incomplete, or it has no corresponding code
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element such as return statement and formal parameter. This
will make the model unable to know when to generate a certain
type of description. Second, concatenating all descriptions in
the documentation leads to much longer target sequences.
Since the model recursively takes its previously generated
tokens as input, the error in previous steps accumulates and can
lead to worse performance when producing long sequences.
Therefore, StructCodeSum learns to generate different types
of descriptions separately in a multi-task manner, which is
achieved by instruction tuning [31]. In this way, the model can
better exploit the parallel corpus of code and documentation.

In detail, each training example is initially a triple <method,
contexts, description sentence>. It should be noted that a
method may come with multiple parameter descriptions, and
we assign them to different examples. In order to prompt
the model to generate different types of descriptions, the
method and its contexts are organized according to different
instruction templates. The instruction templates for the LLM-
based approach and lightweight approach are elaborated in
Appendix B1 and Appendix B2 respectively. Subsequently,
the examples of different descriptions are mixed together to
train the model via maximum likelihood estimation. Denoting
the built instruction and target description as x̂ and y, the
training objective is to minimize the following loss function:

L(θ) = − 1

N

N∑
i=1

Ti∑
t=1

log pθ(y
i
t|yi<t, x̂

i) (3)

where θ is the learnable model parameters, N is the number of
training examples, Ti is the length of the i-th target description.

Notably, instruction tuning is originally a fine-tuning tech-
nique developed for LLMs but not for un-pretrained small
models. Considering the lower capacity of the lightweight
model, we further fine-tune it on the corpus of function,
parameter and return descriptions respectively with a lower
learning rate, and obtain three expert code summarizers for
prediction. We find this outperforms either training three
expert models from scratch or instruction tuning a single
model for use (Section VI-B).

2) Generating Summaries: Given a contextualized target
method, we convert it to different instructions and feed it
to the trained model. Then we can get different descriptions
corresponding to the chosen instruction templates. We first
obtain its function description, denoted as ŷfun. If it has
formal parameter(s), we then generate description ŷpari for
its i-th parameter. If it has return statement(s), we further
generate its return description ŷret. If it is explicitly called
by other methods in the project, we apply PageRank on its
call graph to identify its most important caller following [47].
Given a graph, PageRank calculates a rank ri to a node i by:

ri =
∑
j∈Bi

β
rj
dj

+ (1− β)
1

n
(4)

where Bi is the set of nodes which points to i, dj is the
number of outgoing edges from node j, β is a normalization
factor below 1, and n is the number of nodes in the graph.
From the nodes (methods) that point to the target method, the
one with the highest rank is selected, denoted as u. Then we

generate a function description ŷu for the selected caller by
treating it as the target method. Finally, we build a Javadoc-
style code summary for the target method according to the
following template:

ŷfun.
This method can be used in uname : ŷu.
@param xpar1 : ŷpar1 .
@param xpar2 : ŷpar2 .
. . . . . .
@param xpark : ŷpark .
@return ŷret.

where uname is the method name of u, xpari is the name
of the i-th target parameter, and k is the number of target
parameters.

D. Backbone Models

1) Pre-trained LLM: We adopt Code Llama [20] as the
backbone model of our LLM-based approach. It is a decoder-
only Transformer pre-trained using an auto-regressive objec-
tive. Based on Llama2 [36], it is further pre-trained on 500
billion tokens, with 85% of these tokens consisting of code
and 15% of natural language. This enables it to significantly
outperform Llama2 on code-related tasks. In particular, Code
Llama includes a fine-tuned version which is trained using
an additional 5 billion instruction tokens, named CodeLlama-
Instruct. This model can perform tasks such as code summa-
rization, refinement, and translation in a zero-shot manner by
following input instructions. However, we find that it exhibits
worse performance than our lightweight model in utilizing
program context through zero-shot inference (Section VI-B).
This is the reason why we resort to instruction tuning. In this
work, we select the CodeLlama-Instruct-7B version due to our
limited computational resources.

During training, given an instruction x̂ and a target descrip-
tion y, we concatenate them to form the input sequence of
Code Llama. We apply Low-Rank Adaptation (LoRA) [64]
to efficiently optimize Code Llama towards Eq. 3. LoRA
injects trainable rank decomposition matrices into the back-
bone model with its original pre-trained parameters frozen.
Namely, given a pre-trained weight matrix W0 ∈ Rd×k, LoRA
constrains its update by representing the latter with a low-rank
decomposition:

W0 +∆W = W0 +BA (5)

where B ∈ Rd×r, A ∈ Rr×k, and the rank r ≪ min(d, k). A
is randomly initialized but B is initialized by zero. We freeze
the original model and apply LoRA to the weight matrices in
its self-attention modules and feed-forward layers.

2) Lightweight Model: The lightweight model is an LSTM-
based Seq2Seq model. Unlike LLMs, small models may not
be capable of handling long inputs. Therefore, we equip it with
three encoders for reading different contents in an instruction:
a method encoder for the target method, two context encoders
for the code-based context and documentation context respec-
tively. Each of them is a bidirectional LSTM (biLSTM) with
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an embedding layer, and takes a sequence of (sub)tokens as in-
put. In particular, the initial state of the method encoder is the
final state of the code-based context encoder, considering that
the representation of the target method should be conditioned
on its surrounding context. The encoders have different sets
of trainable parameters, except for the shared embedding layer
between the method encoder and code-based context encoder.
Fig. A-2 illustrates the architecture of the lightweight model.
The encoded representations of the target method, code-based
context and documentation context are denoted as hx, hq and
hd, respectively.

The decoder is a unidirectional LSTM, which uses h∗

and its previous outputs to predict a target summary y =
(y1, y2, . . . , ym) one element a time. At time step t, its hidden
state st is updated by:

st = LSTM(st−1, [yt−1; ct−1]) (6)

where ct−1 is a context vector computed by the parallel
attention mechanism. The last backward hidden states of the
method encoder and the documentation context encoder are
combined to form the initial decoder state, based on the
similarity of the target code x and the retrieved one xr:

s0 =
←−
h x

−1 + sim(x,xr) ·
←−
h d

−1 (7)

where sim is the similarity metric described in Eq. 2. The
parallel attention is the modification of the multiplicative at-
tention in [65]. Specifically, independent attention mechanisms
are performed on the three encoded representations. Take the
one between s and hx for example, a context vector cxt is
computed as a weighted sum of the elements in hx:

cxt =

n∑
j=1

αtjh
x
j

αtj =
exp(s⊤t W

x
a h

x
j )∑n

k=1 exp(s
⊤
t W

x
a h

x
k)

(8)

where W x
a is the parameter matrix and n is the input length

of the method encoder. The context vectors for the other two
inputs can be obtained accordingly, denoted as cqt and cdt ,
respectively. Then, a global context vector ct is computed as:

ct = Wc[c
x
t ; c

q
t ; sim(x,xr) · cdt ] + bc (9)

where Wc and bc are parameter matrix and bias. Finally, the
conditional probability of generating the next token yt is:

pθ(yt|y<t, x̂) = softmax(Ws tanh(Wt[ct; st])) (10)

V. EVALUATION SETUP

A. Model Training and Inference

1) Pre-trained LLM: We set the LoRA parameter r to 4,
with a Dropout [66] rate of 0.05. As a result, only 6.23%
parameters (420M) of the model are updated. The training
hyperparameters are set according to the configurations of
LLama2 [36]. The optimizer is AdamW, using a cosine learn-
ing rate schedule with an initial learning rate of 2× 10−5 and
a weight decay of 0.1. The batch size is 64 and the sequence
length is 4096 tokens. We zero out the loss on the instruction

tokens during training, and fine-tune the models for 2 epochs.
During inference, greedy decoding and 8-bit quantization are
utilized for efficiency. The experiments are conducted on a
Linux server with an NVIDIA A100 GPU with 80GB V-RAM,
implemented using PyTorch 2.10.

2) Lightweight Model: The subtoken embeddings and
LSTM states are set to 256 dimensions. The maximum input
length of the code-based context encoder is set to 500. The
vocabulary sizes of codes and summaries are limited to 50K
and 25K, respectively. We adopt Adam [67] as the optimizer
with the learning rate of 4 × 10−4 for the initial instruction
tuning and 4 × 10−5 for additional fine-tuning. The batch
size is 64. We clip gradient norm by 5 to avoid exploding
gradients, and apply Dropout of 0.1 on the embedding vectors
and recurrent units. To prevent the models from overfitting,
we stop training when their BLEU scores [68] recorded on
the validation set do not improve within 4 epochs, and then
choose the best models according to the validating BLEU
scores. Beam search [69] is adopted during validating and
testing, with the beam size and length penalty set to 5 and
1.0 respectively. The experiments are conducted on a Linux
server with an NVIDIA Tesla V100 GPU with 16GB V-RAM,
implemented using PyTorch 1.10.

B. Automatic Evaluation Metrics
Following existing work [9, 14, 16, 44–46], we evaluate the

quality of generated summaries using BLEU [68], ROUGE-
L [70], and METEOR [71]. They are also popular in ma-
chine translation and text summarization. These metrics are
calculated for different description sentences but not for the
whole documentation, and we report the scores in percentage.
However, recent researches show that the metrics computing
only word overlap such as BLEU may not be reliable proxies
of human evaluation [72, 73]. Therefore, We further consider
SIDE [74], an embedding-based metric designed specifically
for code summarization, to measure the model performance in
predicting function descriptions. The details of these metrics
can be found in Appendix C. Besides, the Wilcoxon Sign-
Rank tests are applied to the scores of different approaches to
determine if significant performance differences exist between
them, and the corresponding p values are reported.

C. Research Questions
We evaluate the proposed framework by investigating the

following research questions:
RQ1: How do different types of code contexts affect code

summary generation?
RQ2: How effective is instruction tuning for generating

different types of descriptions?
RQ3: How does the proposed approach perform generally

compared to the state-of-the-art code summarization models?
RQ4: How is the quality of the structured code summaries

generated by our approach in practice?

VI. EVALUATION RESULTS

A. RQ1: Impact of Different Code Contexts
To answer RQ1, we train context-aware models with differ-

ent types of code contexts for evaluation, which is achieved
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TABLE IV: Model performance of StructCodeSum (LLM) using different contexts

Description Context Mixed-project Cross-project
BLEU METEOR ROUGE-L BLEU METEOR ROUGE-L

Function

None 20.73 24.15 45.81 13.36 20.58 40.83
Path 24.67 26.35 49.61 14.21 21.26 41.92

Attributes 21.30 24.68 46.68 13.38 20.66 40.97
Siblings 22.01 25.12 47.41 13.72 20.99 41.37

Documents 41.17 34.11 62.62 23.20 23.76 45.40
Hybrid 42.29 35.01 63.80 24.65 24.94 46.87

Return

None 31.58 28.51 51.01 16.99 22.16 43.45
Path 35.37 31.46 55.93 18.82 23.79 45.82

Attributes 31.96 29.29 51.97 17.01 22.39 43.59
Siblings 32.93 30.16 53.49 17.68 23.03 44.70

Documents 49.79 37.77 67.69 27.60 25.57 47.36
Hybrid 50.26 38.57 68.57 29.32 26.81 50.30

Parameter

None 30.63 27.56 55.16 23.88 22.08 47.83
Path 33.73 29.59 58.95 25.00 22.73 48.63

Attributes 30.75 27.80 55.21 23.98 22.00 48.26
Siblings 31.48 28.29 56.14 24.36 22.35 48.42

Documents 49.18 37.18 67.38 35.66 28.17 53.87
Hybrid 49.71 37.59 67.44 36.98 29.01 55.11

TABLE V: Model performance of StructCodeSum (Lightweight) using different contexts

Description Context Mixed-project Cross-project
BLEU METEOR ROUGE-L BLEU METEOR ROUGE-L

Function

None 22.50 22.84 46.97 11.21 16.95 36.53
Path 29.83 26.51 52.84 11.22 16.67 35.88

Attributes 27.59 25.31 50.82 11.19 16.88 36.29
Siblings 28.15 25.56 51.57 11.35 16.85 36.46

Docs 37.31 30.37 56.44 23.49 23.20 45.96
Hybrid 41.00 32.37 60.42 23.16 23.04 46.08

Return

None 35.29 28.30 54.98 16.13 17.66 38.94
Path 41.84 32.37 61.54 17.34 18.56 40.95

Attributes 39.40 30.88 59.01 17.02 18.07 40.19
Siblings 41.11 31.81 60.38 16.63 17.84 39.83

Docs 47.06 34.82 64.55 28.65 24.94 51.14
Hybrid 49.51 36.41 66.93 28.11 24.64 50.43

Parameter

None 30.20 25.44 52.08 19.76 19.21 42.14
Path 36.88 29.05 58.07 19.69 19.12 42.06

Attributes 34.63 27.69 55.68 19.92 19.56 42.33
Siblings 36.93 29.25 57.72 19.55 19.09 41.80

Docs 44.49 32.76 62.04 33.09 26.55 53.18
Hybrid 47.10 34.47 64.81 33.02 26.47 53.02

by removing other contexts from the input instructions. For
simplicity, we directly train different lightweight models on
each type of descriptions, i.e., skip the multi-task instruction
tuning process, and omit their context encoders and attention
modules for the unused contexts. The results of LLM-based
approach and lightweight approach are shown in Table IV
and V respectively, where None denotes the baseline of not
using any program context, Docs denotes using documentation
context only, and Hybrid denotes using all types of contexts
mentioned in Section IV-B.

In general, the scores on return and parameter descriptions
are much higher than on function descriptions. This is because
most of the first two descriptions are noun phrases and thus
are shorter than the latter. Under the mixed-project splitting,
the context-aware models perform significantly better than the
baseline models on all descriptions no matter what type of
context is used. This illustrates the importance of program
contexts for code summarization. Among the contexts other
than Hybrid, Docs is the most effective which boosts the
performance of both lightweight model and LLM by more
than 10 points of BLEU across all descriptions. Since the

documentation context has the same modality as the model
output, it provides demonstration to the model and can directly
guide summary generation. It is also interesting that as the
simplest context, Path is quite useful, which contributes even
more than the class context. Since a package contains a
set of programs with similar functions, businesses, or code
components, the summary styles within a package might be
similar, but those between different packages vary greatly.
Thus, the package or class names can be important prior
knowledge, e.g., to prompt the model to generate summaries
of specific styles learned from training data. Hybrid shows the
best performance on all descriptions and metrics (p < 0.001),
indicating the necessity to mine different contexts for code
summarization as well as the rationality of the chosen contexts.

The scores of all models drastically reduced under the
cross-project setting. Since different projects can have totally
different code patterns and vocabularies (recall that the near-
duplicate codes across projects have been removed), it is much
harder for the models to generalize to new projects. For LLMs,
code-based context positively affects the performance with
the most obvious improvement achieved by Path, and the
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TABLE VI: Effectiveness of instruction tuning on StructCodeSum (LLM)

Description Context Training Mixed-Project Cross-Project
BLEU METEOR ROUGE-L BLEU-S METEOR ROUGE-L

Function
None Zero-Shot 12.75 20.66 40.02 14.33 21.92 41.52

Instruction 20.73 24.15 45.81 13.36 20.58 40.83

Hybrid Zero-Shot 14.95 22.40 42.40 13.58 21.36 41.44
Instruction 42.29 35.01 63.80 24.65 24.94 46.87

Return
None Zero-Shot 16.85 22.37 42.88 16.95 23.14 43.32

Instruction 31.58 28.51 51.01 16.99 22.16 43.45

Hybrid Zero-Shot 18.90 22.57 44.59 18.94 24.02 45.59
Instruction 50.26 38.57 68.57 29.32 26.81 50.30

Parameter
None Zero-Shot 21.49 23.47 46.40 23.20 24.82 48.65

Instruction 30.63 27.56 55.16 23.88 22.08 47.83

Hybrid Zero-Shot 22.53 23.70 47.49 24.33 25.12 49.67
Instruction 49.71 37.59 67.44 36.98 29.01 55.11

TABLE VII: Effectiveness of instruction tuning on StructCodeSum (Lightweight)

Description Context Training Mixed-Project Cross-Project
BLEU METEOR ROUGE-L BLEU METEOR ROUGE-L

Function

None
Standard 22.50 22.84 46.97 11.21 16.95 36.53

Instruction 18.62 19.25 40.01 9.98 14.79 33.16
Instruction (Ft) 23.53 23.51 47.92 11.33 17.01 36.73

Hybrid
Standard 41.00 32.37 60.42 23.16 23.04 46.08

Instruction 32.41 26.65 50.55 20.31 20.85 41.86
Instruction (Ft) 41.84 32.87 61.01 23.88 23.69 46.90

Return

None
Standard 35.29 28.30 54.98 16.13 17.66 38.94

Instruction 31.92 26.82 52.38 16.64 18.20 40.20
Instruction (Ft) 36.21 28.94 56.35 17.64 18.61 41.24

Hybrid
Standard 49.51 36.41 66.93 28.11 24.64 50.43

Instruction 44.19 33.67 61.37 27.45 24.74 49.12
Instruction (Ft) 51.32 37.42 68.39 30.75 26.41 53.14

Parameter

None
Standard 30.20 25.44 52.08 19.76 19.21 42.14

Instruction 27.83 24.32 50.79 20.62 19.88 43.42
Instruction (Ft) 31.09 26.04 53.08 20.82 20.10 43.56

Hybrid
Standard 47.10 34.47 64.81 33.02 26.47 53.02

Instruction 47.25 34.42 64.89 34.39 27.40 54.10
Instruction (Ft) 48.54 35.25 65.97 35.01 27.69 54.68

performance of Hybrid keeps being the best (p < 0.001). How-
ever, for lightweight models, the comparison results are not
consistent with those in the mixed-project setting. Specifically,
code-based context can barely boost performance except for
return descriptions, and Hybrid shows slightly lower perfor-
mance than Docs despite still being much better than the other
variants (p < 0.001). We attribute this to the highly varied
context patterns in different projects. Since the lightweight
model has not been pre-trained on massive projects, it may
have greater difficulty in using unseen class context under the
cross-project setting than the LLM.

B. RQ2: Effectiveness of Instruction Tuning

For the LLM-based approach, we compare it with the zero-
shot inference of Code Llama to answer RQ2, as shown in
Table VI. We feed the built instructions to Code Llama without
training to get its zero-shot results. As seen, the instruction-
tuned version of Code Llama is significantly better than the
zero-shot one on all metrics when taking hybrid code context
(p < 0.001). Moreover, it can be found that the zero-shot
version is also not comparable with the lightweight model.
This suggests that the LLM initially fails to well understand
our instructions, but this can be fixed via instruction tuning on
sufficient examples.

For the lightweight approach, we consider two baselines
to answer RQ2. As shown in Table VII, Standard denotes
conventionally training models on each type of descriptions
(same as Hybrid in Table V), Instruction denotes multi-
task instruction tuning without subsequently obtaining three
expert models, and Instruction (Ft) denotes the training pro-
cess described in Section IV-C1. As seen, in most cases,
Instruction performs worse than Standard. This suggests that
although a shared lightweight model can perform different
tasks simultaneously, it is not as capable as the lightweight
models optimized for individual tasks. By contrast, Instruction
(Ft) shows the best scores on all descriptions and metrics
(p < 0.001), verifying that it is a better approach to leverage
shared knowledge between tasks without losing performance
on individual tasks.

C. RQ3: Comparison with State-of-The-Art Models

We compare our approach with 7 representative code sum-
marization models on generating function descriptions, includ-
ing structure-aware models, context-aware models, retrieval-
based models, and fine-tuned CodeBERT. The details of these
approaches can be found in Appendix D. In addition, we adopt
another zero-shot strategy for Code Llama than the one in
Section VI-B as a baseline, named Code Llama (Prompt). Here
the zero-shot inference is implemented by prompting Code
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TABLE VIII: Performance of our approach compared with baselines on generating function descriptions

Model Mixed-Project Cross-Project
BLEU METEOR ROUGE-L SIDE BLEU METEOR ROUGE-L SIDE

CodeNN 18.86 19.92 40.85 74.09 8.55 13.81 30.22 75.05
AST-AttendGRU 18.43 20.83 41.91 81.38 8.48 14.66 30.77 83.25

AST-AttendGRU + FC 20.86 22.03 43.49 80.09 9.74 16.10 33.67 82.53
AST-AttendGRU + PC 17.83 20.12 41.14 81.08 9.78 16.21 33.75 81.93

Rencos 23.57 23.73 48.13 81.92 11.56 17.37 37.25 83.42
Re2Com 29.10 26.08 50.86 79.39 11.00 16.18 34.64 82.08

CodeBERT 27.84 25.82 52.25 72.40 12.73 18.03 38.67 82.57
Code Llama (Prompt) 21.83 23.16 42.40 83.22 23.20 23.76 45.40 84.83

StructCodeSum (Lightweight) 41.84 32.87 61.01 83.20 23.88 23.69 46.90 84.74
StructCodeSum (LLM) 42.29 35.01 63.80 83.92 24.65 24.94 46.87 85.07

Llama to generate full doc comments rather than different
descriptions separately, also given the hybrid code context.
The prompt template is slightly modified from the one in Fig.
A-1, as shown in Fig. A-3. We use the heuristics described in
Section III-B to extract function descriptions from its outputs
for evaluation. We do not consider this baseline in Section
VI-B because it may fail to include the parameter and (or)
return descriptions in its output documentation.

The comparison results are shown in Table VIII. As seen,
StructCodeSum (LLM) outperforms all baselines by a large
margin on all metrics (p < 0.001). Its improvements over
Code Llama (Prompt) again verify the efficacy of instruction
tuning. On the other hand, StructCodeSum (Lightweight)
greatly surpasses all baselines under the mixed-project setting
on BLEU, METEOR, and ROUGE-L, and is comparable with
the strongest baseline, namely Code Llama (Prompt) under the
cross-project setting. Since it contains only 44M parameters,
it is quite efficient against LLMs.

Among the baselines, AST-AttendGRU + PC shows only
marginal improvements against AST-AttendGRU + FC under
the cross-project setting, and fails to outperform the latter and
even its base model, namely AST-AttendGRU on most metrics
under the mixed-project setting. One possible reason could be
its context selection strategy: randomly choose 10 files in the
project. According to Table II, the average number of classes
in a project in our dataset is 36.2, so random file selection will
lead to the uncertainty of the resulting context, i.e., the relation
and relevance between the context and the target method will
be unknown. On the contrary, the hybrid context we use is
based on program dependencies and similarities and is thus
more reasonable.

Actually, the context used by AST-AttendGRU + FC is close
to our Siblings variant in Table V, while its performance is not
comparable with ours. The key difference here is their input
forms: AST-AttendGRU + FC encodes the sibling methods
separately and obtains their method-level vectors for decoding,
while we concatenate all sibling signatures for encoding and
obtain their token vectors for decoding. Previous work [39]
suggests that the code summarization task prefers token-level
attention rather than using higher-level attention only, which
explains why our encoding method makes more sense. On the
other hand, truncating a method to a short and fixed length
(25 tokens according to [25], while the average length of our
target method is 73.05 tokens recalling Table A-I) could also
introduce noise such as partial method body or signature.

TABLE IX: The results of human evaluation

Approach Naturalness Informativeness
Human-Written 4.78 4.20
Code Llama (Prompt) 4.55 3.38
StructCodeSum (LLM) 4.61 3.72

It is also worth comparing our Docs variant in Table V to
the retrieval-based neural models, i.e., Rencos and Re2Com,
in that the former can also be viewed as a retrieval-based
code summarization model. Under the mixed-project setting,
Re2Com achieves the best BLEU and METEOR scores among
the baselines, while our Docs variant scores much higher.
The main difference between Re2Com and our Docs variant
is that the former retrieves the similar method and exemplar
from the training data while we find existing documentation
in the current project. Thus, the doc comments found from
the code contexts can be more useful than those searched
from an external codebase. Under the cross-project setting, the
retrieval-based baselines do not show strong competitiveness.
This is not surprising because if the retrieved summary is not
relevant to the target code, the retrieval-based models may
not gain ideal improvements from their non-retrieval-based
counterparts [46]. This again indicates that the documented
codes in the current project are valuable context.

D. RQ4: Human Evaluation

To answer RQ4, we conduct a human evaluation on
the structured code summaries generated by StructCodeSum
(LLM), the full method documentation generated by Code
Llama (Prompt), as well as the human-written doc comments
in the dataset. Following previous studies [15, 32, 46, 47],
the code summaries are rated from two unrelated aspects:
Informativeness and Naturalness. Informativeness indicates the
proportion of important content in the codes that the summary
covers, while Naturalness refers to the grammatical accuracy
and fluency of the summary. Their scores are both integers and
range from 1 to 5. We first use a calculator5 to compute the
minimum example number for evaluation to meet the desired
statistical constraints. The confidence level and the margin of
error are set at 5%, and the resulting minimum sample size
is 382 based on the total size of our cross-project test set.
Therefore, we randomly sample 400 methods from the cross-

5https://www.calculator.net/sample-size-calculator.html

https://www.calculator.net/sample-size-calculator.html
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TABLE X: Definition of token sharing metrics

Definition Explanation
Ix =

|set(y)∩set(x)|
|set(y)| % Summary tokens that appear in the target method.

Ipath =
|set(y)∩set(qpath)|

|set(y)| % Summary tokens that appear in the path context.

Iattr =
|set(y)∩set(qattr)|

|set(y)| % Summary tokens that appear in the class attributes.

Isib =
|set(y)∩set(qsib)|

|set(y)| % Summary tokens that appear in the sibling method signatures.

Id =
|set(y)∩set(d)|

|set(y)| % Summary tokens that appear in the documentation context.

Ih =
|set(y)∩(set(q)∪set(d))|

|set(y)| % Summary tokens that appear in the hybrid context.

Dpath =
|(set(y)−set(x))∩set(qpath)|

|set(y)| % Summary tokens that appear in the path context but do not appear in the target method.

Dattr =
|(set(y)−set(x))∩set(qattr)|

|set(y)| % Summary tokens that appear in the class attributes but do not appear in the target method.

Dsib =
|(set(y)−set(x))∩set(qsib)|

|set(y)| % Summary tokens that appear in the sibling method signatures but do not appear in the target method.

Dd =
|(set(y)−set(x))∩set(d)|

|set(y)| % Summary tokens that appear in the documentation context but do not appear in the target method.

Dh =
|(set(y)−set(x))∩(set(q)∪set(d))|

|set(y)| % Summary tokens that appear in the hybrid context but do not appear in the target method.

project test set, obtain the summaries generated by different
approaches, and then equally divide the results into 8 groups.

24 participants with excellent English levels are invited
to rate the summaries. They are either developers or post-
graduate students of computer science, with 2-5 years of
Java development experience and at least 5 years of total
programming experience. Specifically, each group is evaluated
by 3 participants in the form of a web questionnaire. Fig. A-4
shows an example from the questionnaire. The model names
are hidden during evaluation, and the participants are asked to
rate the given summaries based on the corresponding codes.
For each summary, we use the average score from the 3 raters.

The results of human evaluation are shown in Table IX.
As seen, there is a certain gap between the scores of the
human-written comments and the full score of 5, indicating
that there exist low-quality summaries in the dataset, which is
a potential threat to validity. StructCodeSum (LLM) achieves
higher scores than Code Llama (Prompt), especially on In-
formativeness. When applying the Wilcoxon Sign-Rank test
to their Informativeness scores, we get p < 0.05, denoting
significant improvement. The results verify that the structured
code summaries generated by StructCodeSum have higher
fluency and accuracy, thus being more useful to the developers.
We provide output examples from different approaches in
Appendix E.

VII. DISCUSSION

A. Statistical Analysis on Summary Token Distribution

To understand the impact of program contexts on code
summarization, we examine the content sharing between code
summaries and different types of code contexts. We define
several metrics to reflect the distribution of the summary
(sub)tokens in different contexts, as shown in Table X, where
set is a function that converts a sequence of (sub)tokens into
a set, x is the target method, q is the code-based context,
d is the documentation context, y is a code description, and
% denotes “The proportion of”. For simplicity, the parameter
descriptions of a target method are concatenated to a single
y when computing these metrics. In addition to the average
results on these metrics, we are also interested in the summary

token distributions on different ranges of Ix, i.e., different
coincidence degrees between the target method and summary.
The breakdown results are shown in Table XI, which are
reported in percentage.

In the table, the first row of each type of description provides
an overview of the token distribution. As seen, the average
Ix of the descriptions is around 36%, indicating that most of
the tokens in the summary do not appear in the corresponding
method (out-of-method summary tokens, named OoM tokens).
Among the basic contexts, the documentation context and
sibling context share the most tokens with the summary, and
the proportions, namely Id and Isib, are even larger than Ix.
By comparison, our hybrid code context is able to cover many
more keywords in the summary, with the proportion Ih of up to
70%. It also covers the most OoM tokens, with the proportion
Dh of around 40%. This explains why our hybrid context
makes sense in the above experiments.

The average results on different Ix ranges show that when
Ix goes down, the number of sharing tokens between the
summary and code contexts decreases as well. By contrast,
the number of OoM tokens caught by the contexts increases
as Ix declines. When Ix is below 25%, Dh exceeds 50%,
which means half of the tokens in the summary can only be
found in the code contexts. This is intuitive: if we cannot infer
the function of a method, then we have to dig into its context.
Overall, the results in Table XI further demonstrate the crucial
role of code contexts in code summarization.

B. Computational Costs

In practice, a noteworthy aspect is the computational
costs of different approaches. In terms of model complexity,
StructCodeSum (Lightweight) contains only 44M parameters
whereas StructCodeSum (LLM) encompasses 7B parameters.
This leads to a significant difference in their memory costs
and inference speeds. We show their time costs of generating
function descriptions on the cross-project test set in Table
XII. As seen, the inference speed of StructCodeSum (LLM) is
286 times slower than that of StructCodeSum (Lightweight)
despite that the former has better performance (Table VIII).
This suggests that they are suitable for different scenarios.



APPENDIX OF LEARNING TO GENERATE STRUCTURED CODE SUMMARIES FROM HYBRID CODE CONTEXT 14

TABLE XI: Distribution of summary tokens in the code contexts with respect to different Ix ranges (in percentage)

Description Ix Range Count Ix Ipath(Dpath) Iattr(Dattr) Isib(Dsib) Id(Dd) Ih(Dh)

Function

All 464143 36.15 8.87 (2.55) 15.21 (2.18) 39.53 (7.94) 53.90 (32.77) 70.72 (38.11)
[0,25) 143478 13.32 6.25 (4.03) 8.85 (3.53) 23.55 (11.75) 52.53 (44.25) 63.05 (50.48)
[25,50) 191172 34.33 8.89 (2.61) 14.69 (2.10) 38.14 (8.17) 53.61 (33.22) 69.57 (37.48)
[50,75) 99091 56.61 11.46 (1.03) 20.52 (0.99) 54.19 (4.18) 56.15 (23.27) 78.71 (25.42)
[75,100] 30402 88.65 12.70 (0.18) 31.17 (0.17) 75.91 (0.82) 54.82 (6.65) 88.13 (13.43)

Return

All 334300 35.43 9.85 (2.35) 14.41 (1.97) 38.41 (8.85) 55.12 (34.04) 70.76 (39.69)
[0,25) 119947 11.27 4.63 (3.32) 6.61 (2.80) 22.08 (13.99) 51.33 (44.37) 60.61 (51.22)
[25,50) 112469 33.81 9.19 (2.90) 13.31 (2.29) 36.92 (8.77) 54.72 (34.68) 70.03 (39.20)
[50,75) 76164 58.62 13.68 (0.78) 21.83 (0.80) 53.34 (3.60) 59.97 (25.04) 80.84 (26.89)
[75,100] 25720 86.48 25.73 (0.11) 33.59 (0.15) 76.87 (0.71) 60.16 (9.68) 91.48 (16.78)

Parameter

All 258313 38.52 8.10 (1.45) 14.64 (2.03) 42.85 (8.36) 61.22 (36.69) 77.06 (41.07)
[0,25) 64791 12.99 5.29 (2.70) 9.16 (3.56) 24.29 (12.56) 61.53 (52.28) 69.86 (57.41)
[25,50) 104606 33.87 7.40 (1.51) 13.04 (2.15) 39.12 (9.05) 59.84 (37.84) 73.96 (41.86)
[50,75) 72345 57.66 10.44 (0.55) 20.18 (0.88) 57.54 (5.20) 62.65 (26.80) 84.55 (29.35)
[75,100] 16571 84.15 13.26 (0.12) 21.92 (0.25) 74.79 (1.36) 62.59 (11.65) 92.05 (16.83)

TABLE XII: Computational costs of StructCodeSum (LLM) and StructCodeSum (Lightweight)

Parameters Tokens / Second Methods / Second Test Time (Minutes)
StructCodeSum (Lightweight) 44M 2469 238.76 2.35

StructCodeSum (LLM) 7B 6.75 0.87 672.15

If hardware resource is not a problem and higher summary
quality is required, the former is preferred. However, if hard-
ware resource is limited or the number of methods awaiting
documenting is large, the latter is preferred.

Literally, the context of a method can be all source code
files in the project where it resides. Unfortunately, a project
may be very large and thus encoding the whole context is
not feasible due to time or resource constraints. Also, the
project size can easily exceed the context windows of LLMs.
For example, the Apache Hadoop project6 contains more than
31M tokens. Therefore, the hybrid code context we choose
is highly efficient for boosting model performance. Another
advantage of our simplified context is that it does not require
full implementations of the components associated with the
target method, e.g., only signatures of the sibling methods are
needed, which is useful for projects under development.

VIII. CONCLUSION

In this work, we first release a code summarization dataset
with various code contexts and summary content annotations.
Then, we propose a deep learning method, StructCodeSum,
for generating structured code summaries from hybrid code
context. Given a target method, StructCodeSum predicts its
function description, return description, parameter description,
and usage description through hybrid code context, and ulti-
mately builds a Javadoc-style code summary. The hybrid code
context consists of path context, class context, documentation
context, and call context of the target method. StructCodeSum
provides both an LLM-based approach and a lightweight ap-
proach, which are suitable for different scenarios. Both of them
significantly outperform representative baselines. Extensive
experimental results on the constructed dataset indicate that:

1) The proposed hybrid code context significantly improves
the model performance on generating different code

6https://github.com/apache/hadoop

descriptions. Statistical analysis shows that the hybrid
context covers more than 70% of the tokens in the code
summary while the target code itself only covers about
36%.

2) When generating function descriptions, StructCodeSum
significantly outperforms the state-of-the-art code sum-
marization approaches including structure-aware mod-
els, context-aware models, retrieval-based models, and
pre-trained language models.

3) The quality of the structured code summaries generated
by our approach is better than the documentation gen-
erated by Code Llama.

However, there are limitations to this work. The heuristics
for categorizing the content within doc comments are based on
massive observations and are impossible to cover all patterns
in the documentation. Therefore, they cannot guarantee the
resulting annotations are correct. On the other hand, the
documentation styles of different programming languages can
vary, e.g., the specification of Python docstring is different than
Javadoc. It is non-trivial to better identify different elements
within code documentation so that code summarization models
can be effectively guided to generate more useable code
summaries. Moreover, since our dataset is collected from
GitHub, the documented methods in our test set may have
been exposed to CodeBERT and Code Llama during their pre-
training stages, which is a threat to validity.
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APPENDIX

A. Categorize Untagged Sentences

Split block into sentences. A block is split into a sequence of sentences by finding periods. Considering that the
documentation may contain source codes, we determine a “.” as a period if:

• It is immediately followed by a whitespace character or an HTML tag.
• It is not within a pair of brackets.
• It is not within abbreviations “e.g.” and “i.e.”.
Identify example codes and SATD descriptions. The first things we have to remove from a raw doc comment are code

examples and SATD descriptions, in that generating them is currently beyond the scope of code summarization and they will
badly affect model evaluation. In detail, we remove a sentence from a doc comment if it contains any of the following patterns
(ignoring letter case, same for the other rules below):

• It contains the keyword “see”.
• It starts with the keywords “for instance”, “for example”, or “example:”.
• It defines explicit code style via <code>...</code> or {@code}, and the wrapped code is longer than 30 characters.
• It contains <pre>,<blockquote> tags.
• It contains the SATD keywords “TODO”, “FIXME”, “bug”, “compatibility”, “hack”, or “xxx” [75, 76].
It is hard to say that the untagged block is an overall method description because it may be some specific comments missing

tags. In practice, comments for @return and @exception are likely to be mixed up with the method description rather
than following explicit tags. Since tag comments are preferred to be non-redundant with the overall method description, it is
reasonable to tell them apart.

Identify return descriptions. We determine an untagged sentence as a return comment if it contains any of these patterns:
• It starts with “return”.
• It contains the keywords “this returns”, “this method returns”, “this function returns”, “will return”, “will not return”,

“won’t return”, “will be returned”, “will not be returned” or “won’t be returned”.
Identify exception descriptions. Similarly, we determine an untagged sentence as an exception comment if it contains any

of these patterns:
• It starts with “throw”.
• It contains the keywords “this throws”, “this method throws”, “this function throws”, “will throw”, “will not throw”,

“won’t throw”, “will be thrown”, “will not be thrown” or “won’t be thrown”.
Identify usage descriptions. Since usage comments or tips usually reflect detailed business and implementation logic and

are very hard to predict from the contexts, e.g., “Must be called from the UI thread”, we also separate them from the general
method descriptions. We determine an untagged sentence as a usage comment if it contains any of these patterns:

• It starts with “used”, “called” or “invoked”.
• It contains the keywords “be used”, “be called”, “be invoked”, “works only”, “only works”, “cannot”, “do not”, “is valid

only”, “is only valid” or “please”.
Identify summary sentence. If the first sentence in the untagged block is not removed or identified as a specific comment,

it will be considered as the summary sentence.

B. Instruction Templates

1) Pre-trained LLM: Figure A-1 illustrates the instruction template for Code Llama, which is designed according to the
OOS-Instruct dataset [77]. It is divided into two sections: System Prompt and User Prompt. Overall, System Prompt aims

TABLE A-I: Statistics of code lengths, context sizes, and description lengths after preprocessing

Name Mean Std. Median 75th Percentile 85th Percentile 95th Percentile
# Tokens in the target method 73.05 88.38 34 87 139 286
# Attributes in a class 4.99 5.79 3 6 9 17
# Methods in a class 12.26 11.33 9 16 22 39
# Callees in the target method 1.02 2.30 0 1 2 4
# Callers of the target method 1.09 8.13 0 1 2 3
# Words in a function description 9.89 5.61 8 12 15 21
# Words in a parameter description 7.30 4.55 6 9 11 16
# Words in a return description 8.70 5.18 7 12 14 18
# Words in an exception description 8.65 4.83 7 10 13 18
# Words in a usage description 15.62 6.99 14 20 24 30
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TABLE A-II: Statistics of the dataset split by different strategies

Splitting Strategies # Target Methods # Function Descriptions # Parameter Descriptions # Return Descriptions

Mixed-project
Training 496,180 371,212 310,610 267,530
Validation 62,022 46,307 39,312 33,351
Testing 62,023 46,624 39,030 33,419

Cross-project
Training 496,467 371,305 306,813 271,831
Validation 62,068 46,483 41,547 31,883
Testing 61,690 46,355 40,592 30,586

You are a helpful, precise, detailed, and concise artificial intelligence assistant with deep expertise in Java programming languages. You excel 
at understanding and summarizing code effectively. In this task, you are required to read the provided Java method and its context. Based on 
the given requirements, generate a specific type of summary. This summary can be a description of the method's functionality, a description of 
the return value, or a description of a parameter.
Requirements:
The generated summary should accurately reflect the object to be described.
The generated summary should be concise and easy to understand.
If context is provided, you need to understand the code based on the context and generate a description.
Below is a method and its context. Your task is to provide the summary based on its target and format.
### Context:
#### Sibling methods signatures:
<sibling method signature - 1>
<sibling method signature - 2>
…
#### Class Attributes:
<attribute - 1>
<attribute - 2>
…
#### Path:
Project name : <project name>
Package name : <package name>
Class name : <class name>
Class Signature : <class signature>
#### Relevant documentation (Relevance level : {low, medium, high, very high})
<Relevant document>
### Method:
<code>
### Summary target:
{Functionality description, Return value description, Parameter description of <parameter name>}
### Response (one sentence):

<summary>

System Prompt (Fixed)

User Prompt

Output

Fig. A-1: Instruction template for Code Llama

to help Code Llama understand the task and User Prompt is the core part of an instruction. Besides, Output is the summary
to be generated, i.e., the ground truth description.

In User Prompt, the subsection Context consists of the hybrid code context introduced in Section IV-B, where the red
placeholders are replaced by specific contents. In particular, for the documentation context, the similarity calculated by Eq. 2 is
mapped to words indicating the relevance level, where the mapping thresholds are set to 0.33, 0.48, and 0.63 (this is statistically
derived from the training data). The placeholder <code> is replaced by the target method. Summary target indicates which
kind of description should be generated. The marker “Response:” indicates the start of generation. The placeholder <summary>
is replaced by the target description during training and omitted during inference. Code Llama has a built-in tokenizer, so the
input codes are not tokenized before being fed to the model.

2) Lightweight Model: For the lightweight model, the input codes are tokenized and further split into subtokens according to
camelCase and snake case. In particular, given a package name, we tokenize it into a token sequence by “.”, and then append
the tokenized class name to it. The tokenized code-based contexts are concatenated to a single subtoken sequence together
with different tags indicating their types. Formally, the subtoken sequences of path qpath, attributes qattr and siblings qsib

form a input sequence q = (<path>, qpath,<attr>, qattr,<sib>, qsib) , where the attributes and signatures within qattr

and qsib are separated by “;”.
Special tags are also inserted into the tokenized documentation context to separate different descriptions. Assuming that

the retrieved method has a function description dfun, a sequence of parameter descriptions dpar, a return description
dret, a sequence of exception descriptions dexc and a usage description duse, the concatenated input will be d =
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Split Instruction to 
Three Sequences

Target Method

Code-Based Context

Documentation 
Context

Context 
Encoder (Doc)

Context 
Encoder (Code)

Method 
Encoder

Parallel 
Attention

Decoder

Code 
Similarity

Code Summary

Fig. A-2: Model architecture of StructCodeSum (Lightweight)

(<fun>,dfun,<par>,dpar,<ret>,dret,<exc>,dexc,<use>,duse), where the descriptions within dpar and dexc are split
by “;”. In practice, documented methods sometimes do not exist in a project. In this situation, d will be a zero-padded sequence,
and the input similarity will be set to 0.

We insert a task tag (<fun>, <par>, or <ret>) at the beginning of each target method to prompt the model to generate
different descriptions. To make the model generate the desired parameter descriptions, we insert the tokenized parameter
name before the target method. Namely, when generating a parameter description, the input of the method encoder will be
x′ = (<par>,xpar,<par>,x), where xpar is the subtoken sequence of the target parameter.

C. Automatic Metrics

BLEU [68]: It calculates the weighted geometric mean of n-gram precisions between the generated sentence and the reference
for different n, and applies brevity penalty on short predictions:

BLEU = BP · exp

(
N∑

n=1

wn log pn

)

BP =

{
1 c > r

exp
(
1− r

c

)
c ≤ r

(11)

where pn is the n-gram matching precision of length n subsequences, c is the length of candidate sentence, r is the reference
length and BP refers to brevity penalty. We compute BLEU for N = 4 with wn set to uniform weight 1

4 . Considering that
higher order n-grams may not overlap, we smooth the BLEU score with NIST smoothing (smoothing method 3 in [78]).

ROUGE-L [70]: It is a common metric for text summarization. It computes the similarity between a generated summary
Y and a reference X based on the length of the longest common subsequence. Suppose the lengths of X and Y are r and c
respectively, it is computed as:

Plcs =
LCS(X,Y )

c

Rlcs =
LCS(X,Y )

r

Flcs =
(1 + β2) · Plcs ·Rlcs

Rlcs + β2 · Plcs

(12)

where LCS calculates the length of the longest common subsequence of two sentences. In our experiments, Flcs is reported
and β is set to 1.
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You are a helpful, precise, detailed, and concise artificial intelligence assistant with deep expertise in Java programming languages. You excel 
at understanding and summarizing code effectively. In this task, you are required to read the provided Java method and its context. Based on 
the given requirements, generate a JavaDoc for the method.
Requirements:
The generated JavaDoc should accurately reflect the object to be described.
The generated JavaDoc should be concise and easy to understand.
If context is provided, you need to understand the code based on the context and generate a description.
Below is a method and its context. Your task is to generate the JavaDoc of the method.
### Context:
#### Sibling methods signatures:
<sibling method signature - 1>
<sibling method signature - 2>
…
#### Class Attributes:
<attribute - 1>
<attribute - 2>
…
#### Path:
Project name : <project name>
Package name : <package name>
Class name : <class name>
Class Signature : <class signature>
#### Relevant documentation (Relevance level : {low, medium, high, very high})
<Relevant document>
### Method:
<code>
### Summary target:
JavaDoc
### Response (JavaDoc format):

System Prompt (Fixed)

User Prompt

Fig. A-3: Prompt template for the baseline Code Llama

METEOR [71]: Based on BLEU, it takes recall into account and applies synonym matching. It computes a parameterized
harmonic mean of unigram precision P and recall R with a penalty:

METEOR = (1− Pen) · Fmean

Fmean =
PR

αP + (1− α)R

Pen = γ ·
(
ch

m

)β

(13)

where m is the number of unigram matches and ch is the number of chunks. We use the optimized parameter settings for the
English target described in [71]: α = 0.85, β = 0.2 and γ = 0.6.

SIDE [74]: Different from the above metrics, SIDE measures the suitability of the generated summary for the target method
independently from the original human-written comment. It leverages contrastive learning to train a BERT-like model such that
the paired codes and summaries are close in its learned embedding space while the unpaired ones are set apart. Subsequently,
the cosine similarity between the embeddings of the generated summary and the target method is used to measure the summary
quality. Since SIDE treats the first sentence of the Javadoc as the summary during training, it can only be adopted to evaluate
the function description.

All these metrics are computed on the summary level. The implementations of BLEU and METEOR are from NLTK 3.57

and the implementation of ROUGE-L is from py-rouge8.

D. Baselines

CodeNN [32] is the first neural code summarization model. It uses LSTM with attention to generate summary directly from
token embeddings of source code.

AST-AttendGRU [8] is a typical model with multiple inputs, which has one GRU encoder for the token sequence of code
and another one for its flattened AST, namely SBT sequence [34]. During decoding, the attentional contexts of both encoders
are fused to predict a target word. Similar combination strategies are adopted in [9, 11, 13].

7https://www.nltk.org/
8https://pypi.org/project/py-rouge/

https://www.nltk.org/
https://pypi.org/project/py-rouge/
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AST-AttendGRU + FC [25] enhances AST-AttendGRU with file context. The file context mentioned in [25] refers to other
methods in the same file as the method to be summarized. In the case of Java files, this is usually equivalent to the sibling
methods within the same class as the target method. In detail, based on AST-AttendGRU, it encodes these methods using an
extra GRU encoder, and makes the decoder attend to the file context during summary generation. For efficiency, the authors
truncate each method in the context to the first 25 words.

AST-AttendGRU + PC [27] improves AST-AttendGRU with project-level context, with an extra project-level encoder to
create a vectorized representation of randomly selected code files in a project. The project-level encoder first encodes the
methods in the selected files (the maximum file number is set to 10 according to the paper) to method vectors via an RNN,
and then uses another RNN to aggregate the method vectors to file vectors. During decoding, the decoder attends to the file
vectors to generate target words.

Rencos [44] is the first work that combines retrieval-based and NMT-based methods in code summarization. Given a target
code snippet, it retrieves the two most similar code snippets from the training set based on syntax and semantics respectively,
and then feeds them into a trained code summarizer. The code summarizer translates the three codes simultaneously and
combines their output probabilities according to their similarities.

Re2Com [15] is another retrieval-based model proposed recently. Compared with Rencos, it further considers the existing
comment of a similar code snippet and uses it as an exemplar. It builds an encoder-decoder model with four biLSTM encoders
for the given code snippet, its SBT sequence, its similar code, and the exemplar, respectively. The context vectors of the target
code and exemplar are fused according to the code similarity.

CodeBERT [48] is a pre-trained model for programming language and natural language based on Transformer [79]
architecture. It is pre-trained on CodeSearchNet with both bimodal data, which refers to parallel data of code-documentation
pairs, and unimodal data, which stands for unpaired codes and natural language texts. Its training objective includes masked
language modeling and replace token detection. Code summarization can be one of its downstream tasks.

Since previous neural models mainly focus on generating a brief function description of code rather than a structured code
summary, we limit the comparison to function descriptions. In detail, these baselines are trained and evaluated on the examples
that have function descriptions in our dataset, with the same splitting and preprocessing as ours. The hyperparameters of these
baselines are kept the same as those presented in their papers. For a fair comparison, we enhance CodeNN with parametric
multiplicative attention and input feeding mechanism [65], which is also adopted by our approach. We also replace the GRUs
in AST-AttendGRU and its variants with LSTMs based on their original implementations, and their encoders are set to be
bidirectional instead of unidirectional. These modifications greatly improve their performances. All these baselines adopt beam
search during decoding, with the same settings as ours. For the pre-trained CodeBERT, we equip it with a Transformer decoder
and then fine-tune it on our training data.

E. Output Examples

In this section, we provide several output examples from different approaches on the test set to examine their actual quality,
as shown in Table A-III and Table A-IV, where Code Llama (No Context) is similar to Code Llama (Prompt) in Section VI-C
but without any code context in the prompts. In each example, we show the human-written doc comment as well as part of
the code context, and the formatting of the code summaries is adjusted for a better look.

The comment in Example 1 contains an OoM keyword “transport”. This token appears in the package name and class name
of the target method rather than itself. Since CodeBERT and Code Llama (No Context) do not use code context, they fail to
generate this token. On the contrary, StructCodeSum generates an accurate summary. In Example 2, there is an OoM keyword
“observation sequence” in the comment, where CodeBERT and Code Llama (No Context) also fail to generate it. Notably,
the method in this example has a parameter and return statement, but there is no corresponding description in the human-
written comment. Since “observation sequence” is covered in the documentation context, StructCodeSum correctly captures it.
Meanwhile, the usage description, parameter description, and return description generated by StructCodeSum are all consistent
with the target method and can serve as a supplement to the original comment. In Example 3, the most important caller of
the target method is convertFieldValue. StructCodeSum accurately predicts its summary as a usage description of the
target method. Moreover, in both Example 3 and 4, StructCodeSum generates better parameter descriptions than Code Llama
(No Context).

From these examples, we can see that compared with CodeBERT and vanilla Code Llama, StructCodeSum can generate
different types of code descriptions with better quality through hybrid code context, and further produce standardized and
structured code summaries.
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Fig. A-4: An example from the questionnaire for human evaluation
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TABLE A-III: Examples of generated summaries

Example 1 

Source Code 

@Override  
    public void shutdown() {  
    runner.set(false);  
    try {  
        threadA.join();  
        if (threadB != null)  
            threadB.join();  
        } catch (Exception e) {}  
        CloseHelper.quietClose(driver);  
        try {  
            Thread.sleep(500);  
        } catch (Exception e) {}  
} 

Context Package Name org.nd4j.parameterserver.distributed.transport 
Class Name BaseTransport 

Summary 

Human-Written This method stops transport system. 
CodeBERT Shutdown the client. 
Code Llama 
(No Context) Shutdown the thread. 

StructCodeSum 
(LLM) Shutdown the transport. 

Example 2 

Source Code 
private int[] translate(T[] o) { 
    return Arrays.stream(o).mapToInt(ordinal).toArray(); 
} 

Context 

Similar Code public double p(T[] o) 

Documentation 
Context 

Returns the probability of an observation sequence. 
@param o an observation sequence. 
@return  the probability of this sequence. 

Summary 

Human-Written Translates an observation sequence to internal representation. 
CodeBERT Translate an array. 

Code Llama 
(No Context) 

Translates the given array of objects to an array of integers. 
@param o the array of objects to be translated. 
@return  the translated array of integers. 

StructCodeSum 
(LLM) 

Translate the observation sequence to an integer sequence. 
This method can be used in {@code p}: computes the p value for a given 
vector. 
@param o an observation sequence. 
@return  the integer representation of the observation sequence. 
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TABLE A-IV: Examples of generated summaries (continued)

Example 3 

Source Code 

protected P upConvertPayload(GenericRecord inputRecord) throws 
DataConversionException { 
try { 
    Schema payloadSchema = getPayloadSchema(inputRecord); 
    latestPayloadReader.setSchema(payloadSchema); 
    byte[] payloadBytes = getPayloadBytes(inputRecord); 
    Decoder decoder = DecoderFactory.get().binaryDecoder(payloadBytes, null); 
    return latestPayloadReader.read(null, decoder); 
    } catch (Exception e) { 
        throw new DataConversionException(e);}} 
} 

Context Call Context protected Object convertFieldValue(Schema outputSchema, Field 
field, GenericRecord inputRecord, WorkUnitState workUnit) 

Summary 

Human-Written 

Convert the payload in the input record to a deserialized object with the 
latest schema. 
@param inputRecord  the input record. 
@return     the schema'ed payload object. 

CodeBERT Convert the payload. 

Code Llama 
(No Context) 

Converts the payload of the input record to the latest schema. 
@param inputRecord  the input record. 
@return     the converted payload. 

StructCodeSum 
(Lightweight) 

Deserialize payload using payload schema. 
This method can be used in {@code convertFieldValue}: convert a field 
value to a java object. 
@param inputRecord  the input record from which to deserialize 
payload. 
@return     the converted payload. 

Example 4 

Source Code 

public boolean hasStickyHeader(View itemView, int orientation, int position) { 
    int offset, margin; 
    mDimensionCalculator.initMargins(mTempRect1, itemView); 
    if (orientation == LinearLayout.VERTICAL) { 
        offset = itemView.getTop(); 
        margin = mTempRect1.top; } else { 
        offset = itemView.getLeft(); 
        margin = mTempRect1.left; 
    } 
    return offset <= margin && mAdapter.getHeaderId(position) >= 0; 
} 

Summary 

Human-Written 

Determines if a view should have a sticky header. 
@param itemView given by the RecyclerView. 
@param orientation of the Recyclerview. 
@param position  of the list item in question. 
@return    True if the view should have a sticky header. 

CodeBERT Checks if a sticky header exists in the adapter. 

Code Llama 
(No Context) 

Checks if the item at the given position has a sticky header. 
@param itemView the item view. 
@param orientation the orientation of the list. 
@param position  the position of the item. 
@return    true if the item has a sticky header, false otherwise. 

StructCodeSum 
(LLM) 

Determines if an item is obscured by a sticky header 
@param itemView the view to check for a sticky header. 
@param orientation linear layout, vertical or horizontal. 
@param position  the position of the item view. 
@return    true if the item view has a sticky header. 
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