
OR I G I N A L A RT I C L E

Automatic Code Summarization Using Abbreviation
Expansion and Subword Segmentation

Yu-Guo Liang1 | Gui-Sheng Fan1 | Hui-Qun Yu1 | Ming-Chen Li1 | Zi-Jie

Huang2,1

1School of Information Science and
Engineering, East China University of Science
and Technology, Shanghai, China.
2Shanghai Key Laboratory of Computer
Software Testing and Evaluating, Shanghai
Development Center of Computer Software
Technology, Shanghai, China.
Correspondence
Gui-Sheng Fan, School of Information Science
and Engineering, East China University of
Science and Technology, Shanghai, China.
Email:gsfan@ecust.edu.cn
Hui-Qun Yu, School of Information Science
and Engineering, East China University of
Science and Technology, Shanghai, China.
Email: yhq@ecust.edu.cn
Funding information
This work was partially supported by the
National Natural Science Foundation of China
(No. 62372174), the Computational Biology
Program of Shanghai Science and Technology
Commission (No. 23JS1400600), the
Capacity Building Project of Local
Universities Science and Technology
Commission of Shanghai Municipality (No.
22010504100), the Research Programme of
National Engineering Laboratory for Big Data
Distribution and Exchange Technologies (No.
2021-GYHLW-01007), and the Shanghai
2024 Science and Technology Innovation
Action Plan Star Cultivation (Sailing Program,
No. 24YF2719900 and 24YF2720000).

Abstract Automatic code summarization refers to generating concise nat-
ural language descriptions for code snippets. It is vital for improving the ef-
ficiency of program understanding among software developers and main-
tainers. Despite the impressive stridesmade by deep learning-basedmeth-
ods, limitations still exist in their ability to understand and model semantic
information due to the unique nature of programming languages. We pro-
pose two methods to boost code summarization models: context-based
abbreviation expansion and unigram language model-based subword seg-
mentation. We use heuristics to expand abbreviations within identifiers,
reducing semantic ambiguity and improving the language alignment of
code summarization models. Furthermore, we leverage subword segmen-
tation to tokenize code into finer subword sequences, providing more se-
mantic information during training and inference, thereby enhancing pro-
gram understanding. These methods are model-agnostic and can be read-
ily integrated into existing automatic code summarization approaches. Ex-
periments conducted on twowidely used Java code summarization datasets
demonstrated the effectiveness of our approach. Specifically, by fusing
original and modified code representations into the Transformer model,
our Semantic Enhanced Transformer for Code Summarization (SETCS) serves
as a robust semantic-level baseline. By simply modifying the datasets, our
methods achieved performance improvements of up to 7.3%, 10.0%, 6.7%,
and 3.2% for representative code summarization models in terms of BLEU-
4,METEOR, ROUGE-L and SIDE, respectively.
K E YWORD S
Automatic Code Summarization, Code Abbreviation Expansion, Subword
Segmentation, Program Understanding, Deep Learning

1

mailto:gsfan@ecust.edu.cn
mailto:yhq@ecust.edu.cn


2 Liang et al.

1 | INTRODUCTION

Program understanding is essential to software development and maintenance [1]. The presence of high-quality nat-
ural language descriptions for code can significantly enhance the readability and understandability of the program,
thereby boosting the work efficiency of software development and maintenance personnel [2]. Automatic code sum-
marization, as a task of automatically generating corresponding functional descriptions for code, is currently a hot
research topic in the field of program understanding [3, 4].

As advances in deep learning techniques and the enrichment of open-sourced code summarization corpora, data-
driven deep learning methods have significantly improved the efficiency and quality of auto-generated summaries.
[5] pioneered the integration of deep neural networks in automatic code summarization, employing the sequence-
to-sequence (Seq2Seq) model within the end-to-end NMT framework to generate code summaries. Since the Trans-
former [6] emerged in recent years has advantages in representing long sequences, researchers have continuously
proposed advanced code summarization frameworks based on this prevailing model. Most deep learning based auto-
matic code summarization approaches draw inspiration from NMT solutions in NLP, and concentrate on exploring the
relationship between code-related semantic as well as structural information and natural language descriptions [4].

Pre-trained code models, which build upon the architectures of existing deep learning models, are initially trained
on extensive multi-language datasets and subsequently fine-tuned on smaller, task-specific datasets. These mod-
els leverage elaborated pre-training tasks to obtain universal code representation suitable for multiple programming
languages. This makes them versatile for various downstream software engineering tasks, including automatic code
summarization. Similarly, these models borrow key concepts from pre-trained language models in the NLP field, with
a primary focus on designing innovative pretraining tasks that accommodate the unique characteristics of code [7].
TABLE 1 A code snippet containing abbreviations and identifiers that does not comply with naming conventions.

Function ID 36110318

Code

public void load(URL u ){

FileCacheSeekableStream s = new FileCacheSeekableStream(

u.openStream());

load(s);

imgname = u.toString();

......

}

Summary Loads the image from a URL .

Although deep learning based automatic code summarization approaches have achieved impressive results, we
discover that existing code summarization models are still facing difficulties in understanding and modeling complex
information contained in code. For instance, Table 1 presents a Java code snippet (part of the code is truncated for
the sake of brevity) and the corresponding summary description in the Funcom dataset [8], where information of the
abbreviated formal parameter ‘u’ is reflected in the summary. Since Java is a strongly typed language, the type ‘URL’
of the formal parameter in this example may aid models in generating an accurate summary to some extent. However,
basic data types like ‘int’ and ‘char’ in other code snippets can offer limited information, making it challenging for
these models. This necessitates the conversion of abbreviations nested in source code, particularly in identifiers, into



Liang et al. 3

corresponding full terms, which is the goal of the code abbreviation expansion task. Code abbreviation expansion is
able to enhance both the understandability of source code and the accuracy of natural language analysis techniques
[9]. Ideally, the uncertainty of abbreviations’ semantic information can be eliminated by means of code abbreviation
expansion, which not only helps code summarization models better understand codes but enables them to focus on
critical identifiers themselves rather than their types, fostering better text alignment between programming and nat-
ural language. Exploratory experiments suggest that an increase in code abbreviations deteriorates the performance
of a code summarization model. Therefore, this paper’s primary objective is to investigate whether code abbreviation
expansion is capable of improving the performance of code summarization models.

Moreover, the out-of-vocabulary (OOV) issue is another challenge in automatic code summarization [10, 11]. This
problem usually arises when the model encounters identifiers that it has not seen during training, therefore, they are
not included in its vocabulary. To mitigate this issue, current code summarization approaches split code and summary
sequences into individual words using predefined split functions based on the CamelCase and snake_case naming
conventions [8, 12, 13]. For example, if the ‘imgname’ identifier included in the code snippet appears infrequently
across the dataset, it may not be included in the model’s vocabulary. In such cases, during both model training and
inference stages, the identifier would be replaced by a special symbol (usually denoted as <unk>), representing an
unknownword. This replacement leads to the loss of critical information because themodel cannot learn the semantic
meaning of it. However, even if the identifier is frequent enough to be included in the vocabulary, it can still be
challenging for code summarization models to understand its actual meaning and generate an accurate summary. This
is because the traditional naming convention-based split functions can not split ‘imgname’ into the more meaningful
tokens ‘img’ and ‘name’. As a result, the model might struggle to generate the corresponding summary ‘image’.

Although subword segmentationmethods, initially developed for NMT, have effectively addressed theOOV prob-
lem and have been widely adopted in pre-trained language models, these methods have yet to be considered in au-
tomatic code summarization approaches. Existing pre-trained code models have directly utilized subword algorithms
from referenced pre-trained language models, without making necessary adjustments to accommodate the unique
characteristics of code [7]. As a result, their usefulness in addressing the aforementioned challenges is limited. Con-
sequently, the second aim of this paper is to explore how to effectively employ subword segmentation algorithms to
tokenize words that traditional functions fail to split, and to validate their effectiveness in code summarization models.
The main contributions of our work include:

• We propose the use of code abbreviation expansion to weaken the negative impact of abbreviations on pro-
gram understanding and strengthen the language alignment ability of code summarization models. A series of
context-based heuristic algorithms are adopted to expand abbreviations nested in code snippets of Java code
summarization datasets.

• We introduce the unigram subword segmentation algorithm to expose more semantic information and further
enhance the program understanding performance of code summarization models. Code-specific tokenizers are
developed to tokenize code-summary pairs into more granular and semantically preserved subword sequences.

• We present a framework Semantic Enhanced Transformer for Code Summarization (SETCS) to better leverage
the semantic information introduced by above methods. A robust baseline is designed by fusing embeddings of
original and newly generated subtoken sequences, allowing for effective capture of critical information.

• To the best of our knowledge, this is the first work that incorporates code abbreviation expansion and subword
segmentation into the automatic code summarization task. These methods are model-agnostic and can be eas-
ily integrated into existing automatic code summarization approaches. Experiments conducted on two widely
evaluated datasets demonstrate the effectiveness of our proposed methods.



4 Liang et al.

The remainder of this paper is structured as follows. Section 2 summarizes related work. Section 3 details our
proposed methods. The experimental setup and results are explained and analyzed in Section 4 and Section 5, respec-
tively. Following that, some threats to validity are presented in Section ??. Finally, we conclude the paper and discuss
potential avenues for future research in Section 6.

2 | RELATED WORK

2.1 | Automatic Code Summarization

Automatic code summarization approaches focus on leveraging code-related information to generate high-quality
summary descriptions. Based on the type of information leveraged, existing research can be divided into two cate-
gories.

Structure-DrivenCode SummarizationModels. Hu et al. [14] first proposed amethod of using the abstract syntax
tree (AST) representation of source code to improve the performance of the code summarization model. Subsequent
works tried to adopt, optimize AST, or introduce more advanced structural information, such as combined usage of
AST and serialized code [8, 12, 15, 16], fine-grained split ASTs [17, 18], and utilization of code property graph [19],
multi-view graph [20], dataflow graph [21], as well as heterogeneous code graph [22].

Semantic-Driven Code Summarization Models. TL-CodeSum [23] and API2Com [24] demonstrated the effec-
tiveness of application programming interface (API) information for code summarization. DMACOS [25] exploited
the deliberation network and adopted method name prediction as an auxiliary training task to improve the quality of
generated summaries. Li et al. [26] utilized multi-task joint learning to incorporate action word prediction into code
summarizationmodels. Both Rencos [27] and Re2Com [28] combined traditional information retrieval techniqueswith
deep neural networks to exploit the information contained in retrieved similar code snippets or corresponding sum-
maries. MLCS [29] and MPCos [30] designed meta-learning frameworks for the automatic code summarization task
in different scenarios, among which the key idea is to use similar code samples to obtain specific summary generators
optimized for each target code snippet.

Existing pre-trained code models can also be classified into the above two categories according to different types
of model input in the pre-training stage. For example, in addition to source code, GraphCodeBERT [31] and SPT-Code
[32] took control flow graph and AST as additional code-related structural input respectively, while CodeBERT [33],
CodeT5 [34] and PLBART [35] took code-related semantic information such as summaries and posts as additional
model inputs.

Both code abbreviation expansion and subword segmentation methods introduced in this paper fall into the
second category, as the former method utilizes related identifiers to expand abbreviations nested in the source code
and the latter method assists in code summarization models by exposing more semantic information included in the
code snippet.

2.2 | Code Abbreviation Expansion

Due to the limitations of abbreviation dictionaries and general English dictionaries, more advanced approaches for
code abbreviation expansion focus on contextual information of abbreviations, including comments, methods, classes,
and projects. In addition, most researchers generally adopt certain predefined matching rules to find potential expan-
sions by identifying different types of abbreviations. According to our survey, a series of works made by Jiang et al.
[36, 37, 38, 39] in recent years have significantly improved the recall and precision scores of the code abbreviation



Liang et al. 5

expansion task in multiple open-source applications.
Literature [36] used the semantic relationships between software entities and construct knowledge graphs for

entities, semantically related entities, and their relationships to obtain full terms of abbreviations in software entities.
Literature [37] designed a series of heuristic methods utilizing specific fine-grained context to expand the abbrevia-
tions in both formal and actual parameters. In response to the question of whether target abbreviations should be
replaced with the corresponding full names, literature [38] proposed an automatic decision-making tool for abbrevia-
tion expansion. On the basis of [36], literature [39] further proposed an automatic identifier abbreviation expansion
method that leverages the semantic relationship between software entities and migration expansion within the same
application.

To expand abbreviations nested source codes of code summarization datasets, we re-implement and refine three
heuristic algorithms so that abbreviations in identifiers such as parameters and variable names can be expanded as
much as possible. These algorithms have been proved to be highly precise when tested across a range of well known
open-source projects [37].

2.3 | Subword Segmentation

Byte pair encoding (BPE) [40] is a data compression technology and the original idea is to iteratively replace the
most frequently occurred byte pairs in a sequence with a single, unused byte. It was later adopted by Sennrich et al.
[41] to solve the OOV problem in the NMT task and became the dominant method for subword segmentation. By
continuously merging frequently occurred character pairs or sequences, BPE can retain the most frequently occurred
subwords in the process of segmenting rare words. It is worth to note that both CodeBERT and CodeT5 adopt the
tokenizer of Roberta [42], which is a pretrained language model that utilizes this algorithm.

Similarly, the WordPiece algorithm [43] also starts from a small vocabulary and continuously learns the merging
rules during the training of a tokenizer. The difference is that WordPiece prioritizes character pairs with lower fre-
quencies in each part of the vocabulary, and it does not use merging rules learned in the training stage but looks for
the longest subword from the vocabulary for segmentation in the tokenization stage.

Contrary to the above twomethods, the Unigram algorithm [44] continuously removes unnecessary words from a
large vocabulary until the desired vocabulary size is reached. In addition, both BPE andWordPiece segment sentences
or words into unique subword sequences, while Unigram is capable to producemultiple subword segmentation results
based on probability.

To ensure the selection of the most suitable result from tokenized subword candidates, we employ the Unigram
algorithm to train code-specific tokenizers for each code summarization dataset, aiming to preserve the original se-
mantic information of the data samples to the greatest extent possible.

3 | METHODS

Figure 1 shows the flowchart of our approach. Initially, we extract code snippets and corresponding summaries from
source code files. Subsequently, these codes are parsed into Abstract Syntax Trees (ASTs), enabling the extraction of
key information to assist in expanding nested abbreviations within the code. Following this, we utilize the subword
segmentation algorithm to train a tokenizer based on words in the new corpus, which comprises sequences of ex-
panded codes and original summaries. Ultimately, tokenized codes and corresponding summaries are used to train a
code summarization model.



6 Liang et al.

Semantic Enhanced

Transformer

FFN
ASTs

Source Code

Files

Summaries

Codes

Subword Tokenizer

Train

</>

Embedding

< / >< / >

Tokens Expanded & Tokenized

Code Embeddings

Encoder

Original

Code Embeddings

Parse
Embedding

Decoder

Post-process

Embedding

Tokenize

Predicted Summaries

Data Preprocessing Abbreviation Expansion & Code Tokenization Model Training & Test

F IGURE 1 Flowchart of our approach.

The method of fusing the embeddings of both source and modified code using a Feature Fusion Network (FFN)
is not strictly necessary, as the expanded and tokenized code can be directly used to train a new code summariza-
tion model. However, the technique of feature fusion is significant and has been employed in many automatic code
summarization approaches. To better leverage the critical semantic information introduced by methods proposed in
this paper, we further present a new encoder-decoder-based model, namely the Semantic Enhanced Transformer for
Code Summarization (SETCS).

3.1 | Context-based Code Abbreviation Expansion

Figure 2 illustrates the AST corresponding to the code snippet shown in Table 1, while only part of the key attributes
and values are displayed for brevity. Non-terminal nodes in the AST represent various attributes, such as parameters,
name, and body of the method declaration. Terminal nodes represent values of related attributes, such as identifiers
and keywords contained in the code snippet. In the process of parsing source codes into ASTs, four sets of auxiliary
information for each code snippet are extracted and stored:

1) Method ID, project ID, method name, called methods, and passed actual parameters.
2) Formal parameters as well as their types, split parameters, and involved abbreviations.
3) Parameters and their types within the method, split parameters, and involved abbreviations.
4) Variables and their types within the method, split variables, and involved abbreviation.
The method name, actual parameters passed in the called methods, and types of formal parameters are used as

reference words for expanding abbreviations involved in split formal parameters. Types of parameters and variables
are used as the reference words to expand abbreviations involved in split parameters and variables, respectively. The
method ID and project ID are used to locate specific methods in the project when expanding abbreviations. For
example, in the illustrated AST, the method name of ‘load’ (extracted name of the method declaration) and formal
parameter’s type of ‘URL’ (extracted reference type of the formal parameter) will be used to expand the abbreviation
‘u’ in the formal parameter; the variable’s type of ‘FileCacheSeekableStream’ (extracted reference type of the local
variable declaration) will be utilized to expand abbreviation of ‘s’ in the variable name.

Note that before identifying abbreviations, corresponding identifiers are split using a traditional predefined split
function, which splits identifiers based on naming conventions and converts all split words to lowercase. For example,



Liang et al. 7

Method

Declaration

parameters name body

LocalVariable

Declaration

Statement

Expression

Formal

Parameter

Variable

Declarator

Method

Invocation

Reference

Type
name

name name membername

load

u

URL FileCacheSeekableStream s load

. . .

. . .
Reference

Type

. . .

Member

Reference

member

s

F IGURE 2 Illustration of AST.

either ‘fileName’ or ‘file_name’ would be split into ‘file’ and ‘name’. In addition, all abbreviation expansion algorithms
utilize the function to split reference words. Code abbreviation expansion algorithms are shown as follows:
Algorithm 1: Acronym Expansion
Input: abbreviation, reference word
Output: expansion candidate

1 words← split(reference)
2 initialCharacters = ”
3 for each word in words do
4 initialCharacters = initialCharacters + word[0]
5 if abbreviation equals initialCharacters then
6 expansion = initialCharacters
7 return expansion

For longer identifiers that are composed of multiple words, developers often select the initial characters of each
word as an abbreviation during programming, and such an abbreviation form is termed as acronym. For example,
the identifier of ‘timePerFrame’ may be abbreviated as ‘tpf’. When expanding such kind of abbreviations, the initial
characters of each split word are extracted (lines 1-4) and used to compare with the abbreviation, if the abbreviation
and combinations of initial characters are the same, the split word will be considered as the expansion candidate of
the abbreviation (lines 5-6). It should be noted that the abbreviation may be equivalent to the initial characters of
part split words, such as the situation of abbreviating ‘setKeystoreFilename’ as ‘kf’, instead of ‘skf’. To leverage method
names to expand abbreviations present in formal parameters, this case is also considered during the implementation
of the algorithm.



8 Liang et al.

Algorithm 2: Prefix Abbreviation Expansion
Input: abbreviation, reference word
Output: expansion candidates

1 words← split(reference)
2 candidates = []
3 for each word in words do
4 if word starts with and not equals abbreviation then
5 candidates← candidates ∪ word
6 if len(candidates) > 0 then
7 expansion← candidates[0]
8 for each candidate in candidates do
9 if len(candidate) < len(expansion) then
10 expansion = candidate
11 return expansion

Prefix abbreviations are commonly found in identifier definition statements, among which ‘String str’ is the most
typical example. The idea of expanding these abbreviations is to find split words that begin with the abbreviation but
are not exactly equivalent to it in the process of splitting the reference word and add them to the set of expansion
candidates (lines 1-5). Since basic forms of words are usually short, the shortest one is selected as the final expansion
candidate of the abbreviation if multiple candidate expansions are obtained (lines 6-10).
Algorithm 3: Dropped-letters Abbreviation Expansion
Input: abbreviation, reference word
Output: expansion candidates

1 words← split(reference)
2 candidates = []
3 for each word in words do
4 i← 0
5 for j in range(len(word)) do
6 if abbreviation[i] equals word[j] then
7 i← i + 1
8 if i equals len(abbreviation) then
9 candidates← candidates ∪ word

10 break
11 if len(candidates) > 0 then
12 expansion← candidates[0]
13 for each candidate in candidates do
14 if len(candidate) < len(expansion) then
15 expansion = candidate
16 return expansion

The term of ‘idx’ is a common dropped letters abbreviation, and ‘index’ is usually its full name. In the process



Liang et al. 9

of splitting the reference word, every split word and each character in the abbreviation are compared sequentially,
and if a split word (lines 8-9) contains all the characters of the abbreviation, it is appended to the list of expansion
candidates. Then the next split word and each character in the abbreviation are compared again until all split words
are traversed. The code logic of lines 11-15 is the same as lines 6-10 in algorithm 2, where the shortest word in the
list of expansion candidates is finally selected, while the purpose of which is to avoid introducing extraneous long
words that contain abbreviations. Considering that this algorithm is prone to generate erroneous expansion results
for single-letter abbreviations, in practice, the length of input abbreviations is limited to more than 1.

In summary, context information such as parameter types, method names, and actual parameters passed into
called methods are utilized as reference words for formal parameter abbreviations in a specific method. Subsequently,
the most frequent expansion candidate obtained by the three expansion algorithms is selected as the final choice.
For abbreviations contained in parameters and variables within the method body, expansion candidates obtained
by acronym and prefix abbreviation expansion algorithms are favored based on their types. While the overall ap-
proaches of the three abbreviation expansion algorithms described above are generally consistent with that of [37],
the main distinction arises from the original study’s focus on expanding abbreviations in parameters and evaluation
on 9 open-source projects, compared to our need to expand abbreviations nested in both parameters and variables
within datasets containing approximately 4.7k and 0.5M projects, respectively. Consequently, in our implementation,
we encounter more specific scenarios, such as the discovery of ‘setKeystoreFilename’ during expanding acronyms,
and address these issues to balance precision and recall as effectively as possible. More detailed information can be
found in our open-source code.

3.2 | Unigram-based Subword Segmentation

As shown in Figure 1, after obtaining the expanded code snippets, the new corpus’s word collection obtained by the
traditional split method is deemed as the initial vocabulary; then a code-specific tokenizer is trained by leveraging
the unigram subword segmentation algorithm, which based on the unigram language model; finally, the tokenizer is
utilized to tokenize all code-summary pairs into more fine-grained subword sequences before they are fed into the
code summarization model.

In the context of automatic code summarization, the unigram subword segmentation algorithm aims to segment
code sequences and their corresponding summary sequences into subword units, considering subword-level proba-
bilities. The algorithm follows the steps outlined below:

For a pair of code sequence C and summary sequence S in the new corpus D , let c = (c1, . . . , cx ) and s =

(s1, . . . , sy ) correspond to subword sequences for C and S , respectively. The unigram language model assumes that
each subword appears independently, so the occurrence probability of a subwords sequence c = (c1, . . . , cx ) can be
formalized as product of each subword’s occurrence probability:

P (c ) =
x∏
i=1

p (ci )

[i ci ∈ V,
|V|∑
i=1

p (ci ) = 1

(1)

whereV is the pre-determined initial vocabulary. LetT (C ) represent the set of segmentation candidates for C , then
the most likely segmentation sequence can be formulated as:



10 Liang et al.

c∗ = argmax
c∈T (C )

P (c ) (2)

After that, the expectation maximization (EM) algorithm is used to maximize the following marginal likelihood L,
and estimate the occurrence probability of subwords in the form of hidden variables P (ci ) .

L =

|D|∑
j=1

log (
P

(
C (j )

))
=

|D|∑
j=1

log ©«
∑

c∈T (cj )
P (c )

ª®®¬ (3)

where D =
{〈
C (j ) , S (j )

〉} |D|
j=1 =

{〈
c (j ) , s (j )

〉} |D|
j=1 represents the new code-summary corpus, and |D | is the size of the

corpus.
Finally, following steps are iterated over until the desired vocabulary size |V | is reached:
1) Maintain a fixed vocabulary and use the EM algorithm to optimize P (c ) .
2) Calculate the loss ℓi for each subword ci , where ℓi represents the change in the loss value of L when ℓi is

removed from the current vocabulary.
3) Sort all subwords according to ℓi and retain the top n% of subwords.
Note that high-frequency basic words, including single characters and keywords in the programming language,

should always be kept in the vocabulary to prevent issues of OOV and over-fine-grained tokenization, so that critical
semantic information in initial sequences can be preserved asmuch as possible. Finally, a vocabulary that contains sub-
word tokens and their corresponding occurrence probabilities is obtained, and the trained tokenizer utilizes Equation
(2) to generate the most likely subword sequences c∗ and s∗ for each pair of C and S based on the final vocabulary.

In practice, the tokenizer is used to tokenize each word in the target sequence sequentially. If a word can be
represented by a combination of multiple tokens in the vocabulary, it will be tokenized based on (1) whether the
tokenized subword is included in the pre-split word set of code and the sequence in the same method, which gives
subword candidates occurring in somewhere of the same method higher priority; (2) the number of tokens after
tokenization, which means shorter subword candidates would be a priority. Eventually, the semantically preserved
and/or shortest tokenization result from the Top-k subword combination candidates will be selected.

By leveraging the vocabulary that includes characters, common subwords, and words, rare words in almost all
codes and summaries can be properly tokenized. Most importantly, the fine-grained and semantically preserved sub-
word representation exposes more meaningful information, which is expected to further improve the performance of
the code summarization model.

3.3 | Semantic Enhanced Transformer for Code Summarization

Figure 3 shows the framework of Semantic Enhanced Transformer for Code Summarization (SETCS). Similar to most
code summarization models, SETCS utilizes the encoder-decoder framework, and adopts the Transformer model as
backbone. Both encoder and decoder of the model are stacked with N identical layers, and each layer contains sev-
eral sublayers. Specially, SETCS takes both original and modified code sequences as input of the encoder, while only
original summary sequences are fed into the decoder. Besides, the relative positional encoding [45], instead of Trans-
former’s default positional encoding mechanism, is used to leverage representations of relative positions between



Liang et al. 11

Feed Forward

Multi-Head

Attention

Feed Forward

Multi-Head

Attention

Masked

Multi-Head

Attention

Encoder
Decoder

Post-process

Embedder

Feature Fusion

Network

Embedder

Concat

Code Modified Code Summary ... ...

Concatenated

Embeddings

Code

Representation

...... ......public imgname <blank> }u public url img name }

Embeddings

N×

N×

q k v

WQ
WK WV

r

z

RPEq k v

WQ
WK WV

r

z

RPEq k v

WQ
WK WV

r

z

RPE

F IGURE 3 Framework of SETCS.

elements of input sequences effectively.
Given that the modified code sequence is typically longer than the original one, after obtaining the optimal sub-

word sequence c∗ of a source code sequence C , we insert special <pad> tokens into the original code sequence,
making its length equal to the modified code sequence. This operation aims to align these two sequences precisely
and avoid improper concatenation in the latter. Using a predefined embedder class, these sequences are converted
into dense vector representations that capture the lexical information of both the original and modified code. Follow-
ing that, embeddings of C and c∗ are generated and concatenated together:

eC = concat (ec′ , ec∗ ) (4)
where ec′ and ec∗ represent embedding of original and tokenized code sequence separately. The word embeddings
shown in 3 are actually stacked together, similar to the representations shown in Figure 1. However, we have sepa-
rated them for better understanding.

To obtain the code representation rc that fuses features of both input sequences, the concatenated code embed-
ding eC is sent into a customized network consisting of a Linear layer and a ReLU activation followed:

rc = max (
0, eCW

e + be
) (5)

whereW e and be are learnable parameters in the form of matrix and vector, respectively. After that, rc is fed into the
encoder that is composed of a multi-head self-attention sublayer and a feed-forward sublayer.

The multi-head self-attention sublayer consists of h heads to keep the model focused on information at different
locations in the input representation. Each head performs the self-attention function in parallel and computes an
output sequence z = (z1, . . . , zx ) for the input representation of code, rc = (r1, . . . , rx ) of x elements:

zi =
x∑

m=1

αmn

(
rmW

V + pVmn

) (6)



12 Liang et al.

where rm ∈ Òdr , zi ∈ Òdz . The involved weight coefficient αmn can be formulated as:

αmn =
exp (emn )∑x
o=1 exp (emo )

(7)

where emn is computed via a scaled dot-product attention:

emn =
rmW

Q
(
rnW

K + pKmn

)T
√
dz

(8)

The parameter matricesW Q ,W K ,WV ∈ Òdr ×dz are unique per sublayer and head. The encoding vectors pVmn ,
pKmn ∈ Òdz include the relative position information between the input elements rm and rn .

Similarly, the outputs of each head are then concatenated together and fed into the feedforward network sublayer.
The only difference between our customized feature fusion network and the feedforward layer is that the latter
consists of an additional linear transformation:

F eedF orwar d (Z ) = max (
0, ZW 1 + b1

)
W 2 + b2 (9)

whereW 1, W 2, b1, b2 are trainable parameters, and Z represents output of the multi-head self-attention sublayer.
Note that each sublayer in the model is followed by a residual connection and layer normalization, which are omitted
from Figure 3 for brevity.

Compared to the encoder, each layer of the decoder contains an additional masked multi-head self-attention
sublayer. This sublayer is designed to prevent the model from seeing future information during the prediction of the
next word. It achieves this by applying a mask to the part of the summary sequence that comes after the current word
to be predicted. This ensures that the model’s attention is focused only on the known part of the sequence during
the training phase. After passing through the multi-head self-attention sublayer, the token representations are passed
through a feedforward sublayer. Each token representation in the target summary sequence is generated sequentially,
with each token’s generation based on the current encoding state and the outputs generated for the previous tokens.
This process allows the model to build up a context for the current prediction. Finally, the output of the decoder is
passed through a softmax activation function. This function maps the raw model output to a probability distribution
over the possible next tokens, making it possible to select the most likely next token for the summary.

4 | EXPERIMENTAL SETUP

4.1 | Datasets

Given the indispensable role of project information in code abbreviation expansion, we exclude the dataset open-
sourced by Hu et al. [14], even though it is relatively small in scale and has been more widely evaluated, due to its
lack of project information. Instead, we conduct experiments using the Funcom dataset [8] and the Java portion of
the CodeSearchNet corpus [46], henceforth referred to as CSN-Java.

The CSN corpus, sourced from the GitHub open-source repository, comprises code snippets and corresponding



Liang et al. 13

summary descriptions across six programming languages. Among them, CSN-Java contains approximately 4.7k sam-
ples from nearly 0.5M projects. The Funcom dataset, originated from the Sourcerer repository open-sourced by Lopes
et al. [47], consists of 2.1M Java samples from around 29k projects, as preprocessed by LeClair et al. [8].

Despite the preliminary filtering of these two code summarization datasets, we observed a significant number of
low-quality samples. These could negatively impact or inflate the evaluation results of code summarization models
[8, 48]. As a result, we remove samples that meet any of the following conditions during the extraction of code and
summaries from source code files.

1) The code cannot be parsed, or it is not recognized as a method declaration. This step is necessary for the
process of code abbreviation expansion.

2) The length of the split code or summary sequence is less than three. Most of these samples contain fragmented
information with very limited meaning.

3) The summary is identified as Self-Admitted Technical Debt (SATD). These summaries are consisted of mean-
ingless contents such as TODO/Fixme.

4) The summary includes auto-generated phrases such as ‘auto generated’ or ‘generated by’, which is usually
associated with auto-generated code that need to be removed according to previous studies [8, 12, 46].

5) The contents of the summary are identical, occur more than 300 times, and do not relate to the actual func-
tionality of the corresponding code.

6) The code is an exact or near duplicate, which may inflate model evaluation results [48].
TABLE 2 Statistics of code-summary pairs, parsed identifiers, split identifiers, identified abbreviations, and

expanded abbreviations in two datasets.

Dataset Partition Code-Summary
Pairs

Parsed
Identifiers

Split
Identifiers

Identified
Abbreviations

Expanded
Abbreviations

CSN-Java
Train 368,224 12,996,895 22,424,406 3,620,121 602,310
Valid 16,846 602,239 1,028,123 187,108 30,129
Test 16,746 595,283 994,543 137,407 26,048
Total 401,816 14,194,417 24,447,072 3,944,636 658,487

Funcom
Train 1,371,687 16,896,844 28,956,036 4,368,006 931,854
Valid 86,165 1,077,001 1,850,750 271,223 59,134
Test 81,642 1,022,339 1,753,158 259,266 61,124
Total 1,539,494 18,996,184 32,559,944 4,898,495 1,052,112

In the process of dataset filtering, we use the javalang 1 library to parse the code, the SATD detection tool 2 to
identify SATDs, and the Near-Duplicate Code Detector 3 to detect cloned codes, respectively. Refer to LeClair et
al. [8], both filtered datasets are partitioned into training, validation, and test set by project, maintaining a ratio of
90:5:5. The third column in Table 2 shows the number of code-summary pairs in two filtered datasets. For clarify,
these filtered dataset are referred to as the original dataset used in subsequent experiments.

1https://github.com/c2nes/javalang
2https://github.com/Tbabm/SATDDetector-Core
3https://github.com/microsoft/near-duplicate-code-detector

https://github.com/c2nes/javalang
https://github.com/Tbabm/SATDDetector-Core
https://github.com/microsoft/near-duplicate-code-detector


14 Liang et al.

4.2 | Exploratory Experiments

To investigate the potential adverse effects of abbreviations in code on code summarization models, we conduct
exploratory experiments by actively augmented the prevalence of abbreviations in the code. We then observe the
resultant changes in model performance on both the original and abbreviated datasets. This allowed us to assess the
impact of abbreviation-rich code on the effectiveness of code summarization.

Specifically, we crawl open-source Java projects with over 20 stars fromGitHub and extract parameters, variables,
and their corresponding types from the parsed code. If a specific parameter or variable was identified as an acronym,
prefix, or dropped-letters abbreviation of its corresponding type, the parameter or variable and it’s type will be added
to the expansion-abbreviation library. Ultimately, we obtain a library containing 5956 pairs of expansion and abbrevi-
ation. Using this library, we replace identifiers in the CSN-Java dataset that match the expansions with corresponding
abbreviations. To minimize the influence of manually introduced abbreviations on the original semantic meaning of
code in the dataset, identical identifiers in a code snippet will be replaced with the same predetermined abbreviation.
If an identifier can be replaced with multiple different abbreviations, it will be randomly replaced with an abbreviation
that does not duplicate existing identifiers in the current code snippet. Subsequently, we train and test two repre-
sentative code summarization models, Seq2Seq and Transformer, on both the original and abbreviated datasets, and
evaluate the models’ performance using common evaluation metrics, namely BLEU-4, METEOR, and ROUGE-L. De-
tailed information regarding the models and evaluation metrics used in the experiments will be provided in Section
4.4 and Section 4.5, respectively.

The changes in evaluation metrics for Seq2Seq and Transformer models on the original and abbreviated datasets
are depicted in Figure 4. It is evident from the results that increasing the proportion of abbreviations in the dataset
negatively impacts the performance of code summarization models. Both models exhibit a decrease of approximately
1.5, 2, and 3.5 points in the BLEU-4, METEOR, and ROUGE-L metrics, respectively, when more abbreviations are in-
troduced into the dataset. These findings suggest the potential for enhancing the performance of code summarization
models by minimizing the presence of abbreviations in the datasets.

(a) Seq2Seq (b) Transformer

F IGURE 4 Radar map showing performance degradation of models on original and abbreviated CSN-Java
datasets.



Liang et al. 15

4.3 | Preliminary Experiments

Studies in the code abbreviation expansion domain define a word as an abbreviation if it if not found in an English
dictionary [37, 49]. We employ the PyEnchant 4 library to identify abbreviations from split identifiers. Specifically,
words not included in the ‘en_US’ dictionary of the enchant library are considered abbreviations. Additionally, single
letters, with the exception of ‘a’, are also treated as abbreviations to complement the identification results. The last
four columns in Table 2 show the number of parsed identifiers, split identifiers, identified abbreviations, and expanded
abbreviations in two datasets respectively. It can be found that more than 25% of identifiers contain abbreviations.
After leveraging abbreviation expansion algorithms, about 21% of the abbreviations in the Funcom data set are ex-
panded, while this percentage in CSN-Java is approximately 17%. We attribute the difference to: (1) Compared with
the Fucnom dataset, each code snippet in CSN-Java contains a larger number of abbreviations on average (about 3 to
10), indicating that there is substantial room for exploration in abbreviation expansion for this dataset. (2) The projects
in CSN-Java contain partial methods, which means that only a fraction of the full method implementation is present
in the dataset. Consequently, the amount of context information available for expanding abbreviations is inherently
limited.

Given that the precision of abbreviation expansion directly or indirectly affects the performance of code summa-
rization models in subsequent experiments, we randomly sampled 1000 expanded abbreviations from two datasets
for manual evaluation. Specifically, we found two cases of expansion errors:

1) The term abbreviation is contained within the reference word. For example, ‘uri’ typically refers to the Uniform
Resource Identifier. However, due to the presence of ‘Security’ in the method name ‘getSecurityProtocol’, the split
‘security’, as a reference word, was incorrectly interpreted by the Dropped Letters expansion algorithm as the full
name of the abbreviated parameter ‘uri’.

2) There are multiple expansion candidates in the reference words. For example, when expanding the abbreviated
parameter ‘p’ using the Acronym expansion algorithm, the ‘player’ from the parameter type ‘PlayerPreferences’ was
initially identified and determined as its expansion. However, based on the context of the function, the expansion
corresponding to abbreviation ‘p’ should be ’preferences’, or more precisely, ‘player preferences’.

Overall, heuristic-based acronym expansion algorithms cannot achieve perfect precision and are susceptible to
the influence of developer abbreviation habits. The two types of expansion errors mentioned above are unavoidable.
Fortunately, both cases are rare (one case for each type found in 1000manually evaluated samples), and in most times,
developers use abbreviations that include the initials of all words in parameter or variable types, which are correctly
expanded by the utilized algorithms.

During the training of the tokenizer, we set the expected vocabulary size to 30k, and retain the top 90% subwords
at the end of each iteration. In the process of dataset tokenization, the final tokenization result is selected from the
Top-9 candidate subword combinations for both datasets. More detailed information about determining the ‘k’ value
will be discussed in Section 5.3.

To prevent data leakage, we construct the initial vocabulary using only split code and summary words from the
training and validation sets. When tokenizing words in the test set, we select the final tokenization results by referring
only to the split words from the code.

4https://pyenchant.github.io/pyenchant

https://pyenchant.github.io/pyenchant


16 Liang et al.

(a) CSN-Java (b) Funcom

F IGURE 5 Venn diagram showing statistics of shared and unique tokens for original, abbreviation expanded, and
tokenized results of two datasets.

The distributions of shared and unique tokens for original, abbreviation expanded, and tokenized datasets are
shown in Figure 5. The outermost navy blue, adjacent dodger blue, and innermost light cyan circles in the venn
diagram represent the unique token distribution of the original, abbreviation expanded, and ULM tokenized datasets,
respectively. Numbers in the middle represent the quantity of shared tokens of datasets in different status, where
we can find that trained tokenizers effectively limit vocabulary size of tokenized datasets to less than 30K; numbers
on the leftmost part (colored in navy blue) and rightmost part (colored in light cyan) indicate the quantity of unique
tokens in the original andULM tokenized datasets respectively. The unique tokens in bothULM tokenized datasets are
subsequences of longer numerical sequences. In addition, basic numeric tokens of 0-9 are also included in vocabularies
to guarantee all fresh numbers appearing in the test set can be properly tokenized via existing numeric tokens. It is
worth noting that code abbreviation expansion also reduces the number of unique tokens in original datasets to some
extent. Even in small quantities, these eliminated tokens are usually relatively important abbreviated identifiers as
mentioned earlier. If we don’t expand these abbreviations, they will be generally identified as the <unk> symbols due
to the low occurrence frequency. However, they will likely be tokenized into longer character sequences by trained
tokenizers after introducing the subword segmentation algorithm. Both circumstances may result in the loss of critical
information. Therefore, we believe that it is necessary to perform abbreviation expansion before training and adopting
the tokenizer. Results of ablation experiments (Section 5.2) and example analysis (Section 5.4) on the Transformer
baseline will demonstrate the effectiveness of abbreviation expansion as well as its usefulness in combining with the
introduced Unigram-based subword segmentation method.

4.4 | Baseline Models

To verify the effectiveness of our proposed methods, we conduct experiments using four representative code sum-
marization models:

Seq2Seq: A classical open-sourced NMT framework [50], based on recurrent neural network (RNN) and equipped
with an attentionmechanism. Specifically, this baseline uses LSTM [51] to generate summaries for given code snippets
and is adopted by Rencos [27], Re2Com [28], MLCS [29] as model backbone.



Liang et al. 17

Transformer: The vanilla Transformer [6] model incorporatedwith relative positional encodingmechanism. Specif-
ically, it has been employed by NCS [13], API2Com [24], SiT [20], AST-Trans [16] and the framework of SETCS pre-
sented in this paper.

NCS [13]: An enhanced Transformer designed for code summarization that utilizes both relative positional en-
coding and copying mechanism [52] for the first time. The copying mechanism enables the Transformer to generate
words from the vocabulary and copy from the input source code.

MLCS [29]: A state-of-the-art code summarization framework based onmeta-learning and code retrieval. By opti-
mizing a unique code summarizer for each target code snippet knowledge learned from the retrieved similar examples,
MLCS was able to outperform typical deep-learning models and retrieval-based neural models.

It is worth noting that since both code summarization datasets came from open-source communities, pre-trained
codemodels typically utilize larger-scale open-source corpora for pre-training, thesemodels should have encountered
test samples from the datasets used in our study during the pre-training stage. Therefore, we excluded these models
from the baselines to avoid threats of pre-training technique and data leakage to the internal validity of this study.

Referring to prior works [13, 18, 29, 53], we limit the maximum input and output lengths for all models to 150
and 30, correspondingly. Meanwhile, we set the batch size, vocabulary size, maximum training epochs, and beam size
to 64, 30K, 30, and 4, respectively. The best model for code summarization is determined based on the BLEU scores
from the validation set, and the training process will be halted if there is no enhancement in the BLEU score over
10 successive epochs. All experiments are conducted on a Linux server, which is equipped with a NVIDIA Tesla P40
GPU. The duration of experiments executed on the CSN-Java dataset is less than a day, while those performed on the
Funcom dataset typically require approximately three days.

4.5 | Evaluation Metrics

The commonly adopted evaluation metrics, BLEU [54], METEOR [55], and ROUGE [56], are predicated on the same
underlying scenario. Specifically, for each candidate text, which is the prediction result generated by the trained
model, there exists a corresponding reference text within the dataset, typically a reference summary authored by the
developer. The computation of these evaluation metrics are fundamentally based on precision and recall scores:

Pn =
gramn ( pred , ref )gramn ( pred ) , Rn =

gramn ( pred , ref )gramn ( pred ) (10)

where pred, ref, and gr amn refers to the candidate text, reference text, and the overlapping n-grams, respectively.
The BLEU metric highlights precision, which calculates the geometric average of gr amn matches between pred

and ref:

BLEU = σ · exp
(
1

N

N∑
n=1

log Pn
)

(11)

The classical BLEU-4 is calculated by gr am4.
TheMETEORmetric further considers recall, word form, and synonymmatching, which creates unigram alignment

between pred and ref, while longer gr amn alignment is prioritized in this stage.



18 Liang et al.

METEOR = σ · PnRn

(1 − α )Rn + αPn
(12)

where α is the default parameter used for evaluation.
Note that the penalty factor σ differs in different evaluation metrics. The ROUGE metric calculates gr amn be-

tween pred and ref. The calculation formula can be expressed as:

ROUGE =
2PnRn

Rn + Pn
(13)

The widely used ROUGE-L is calculated based on the longest common sequence.
However, the above-mentioned metrics primarily focus on evaluating textual similarity between candidate and

reference texts, which may penalize semantically equivalent texts that differ in wording. To complement these metrics
and capture the extent to which the candidate text aligns with the semantics of the corresponding code snippet,
we also adopt the newly proposed SIDE metric [57], which has been shown to align well with human assessment.
This metric measures the cosine similarity between embeddings of the candidate text and the corresponding code
sequence:

SIDE = cos (
epr ed , eC

) (14)
where e refers to embedding generated by a fine-tuned MPNet [58] model via contrastive learning.

In all subsequent experiments, we employ the BLEU-4, METEOR, ROUGE-L and SIDE metrics to evaluate the
quality of the summaries generated by the code summarization models, with higher metric scores representing better
quality of generated summaries. For fair comparison, model predictions as well as ground-truth references before
and after tokenization are used for calculation, and the mean score is deemed as the final result for each evaluation
metric.

5 | ANALYSIS OF EXPERIMENTAL RESULTS

For simplicity, this section adopts CAE and ULM to represent Code Abbreviation Expansion and ULM-based subword
segmentation, respectively. In addition, best results of each metric in tables are boldfaced.

5.1 | Method Validation

Experimental results of SETCS compared with baselines and improvements of the baselines after adopting CAE and
ULM on two datasets are shown in Table 3 and 4 respectively.

As shown in Table 3, compared to the Transformer baseline, the proposed SETCS, which further harnesses the
critical semantic information provided by both CAE and ULM, yields an improvement of over 2 absolute points across
almost all evaluation metrics on both the CSN-Java and Funcom datasets. As suggested by Roy et al. [59], this
assures systematic enhancements in summarization quality, implying that our proposed methods, in conjunction with



Liang et al. 19

TABLE 3 Experimental results of SETCS and baselines on two datasets.

Model CSN-Java Funcom
BLEU-4 METEOR ROUGE-L SIDE BLEU-4 METEOR ROUGE-L SIDE

Seq2Seq 16.87 13.37 30.24 83.62 25.79 17.44 38.58 85.71
Transformer 16.65 12.76 28.92 83.55 25.11 17.31 37.60 84.06

MLCS 18.17 12.71 30.66 84.64 27.15 18.34 40.34 86.91
NCS 18.22 13.41 31.72 85.86 27.81 18.82 41.07 87.80
SETCS 18.14 13.96 31.66 85.78 27.81 19.62 41.72 88.28

TABLE 4 Improvements of baselines after adopting both CAE and ULM on two datasets.

Model CSN-Java Funcom
BLEU-4 METEOR ROUGE-L SIDE BLEU-4 METEOR ROUGE-L SIDE

Seq2Seq 16.87 13.37 30.24 83.62 25.79 17.44 38.58 85.71
Seq2Seq w/ Both 17.40 13.67 30.72 84.57 26.26 18.35 39.54 86.25

(+3.1%) (+2.2%) (+1.6%) (+1.1%) (+1.8%) (+5.2%) (+2.5%) (+0.6%)
Transformer 16.65 12.76 28.92 83.55 25.11 17.31 37.60 84.06

Transformer w/ Both 17.60 14.04 30.82 84.83 26.95 18.51 40.12 86.72
(+5.7%) (+10.0%) (+6.6%) (+1.5%) (+7.3%) (+6.9%) (+6.7%) (+3.2%)

MLCS 18.17 12.71 30.66 84.64 27.15 18.34 40.34 86.91
MLCS w/ Both 18.45 12.98 31.29 85.35 27.96 18.88 41.29 87.94

(+1.5%) (+2.1%) (+2.1%) (+0.8%) (+3.0%) (+2.9%) (+2.4%) (+1.2%)
NCS 18.22 13.41 31.72 85.86 27.81 18.82 41.07 87.80

NCS w/ Both 18.51 13.99 32.25 85.99 28.02 19.10 41.31 88.04

(+1.2%) (+4.3%) (+1.7%) (+0.2%) (+0.7%) (+1.6%) (+0.6%) (+0.3%)



20 Liang et al.

the feature fusion approach, could be effectively employed in other code summarization models that utilize a similar
framework to SETCS. Notably, the NCS model, despite being proposed earlier, still outperforms the state-of-the-art
MLCS and other baseline models that merely leverage code-related semantic information on both datasets. Besides,
the improvement of SETCS over NCS is less significant, underscoring the potent potential of the copying mechanism.
Nonetheless, the primary focus of this study is to validate the effectiveness and applicability of CAE and ULM on
existing code summarization models, rather than proposing a new state-of-the-art model. More importantly, SETCS
could serve as a robust baseline or backbone for future studies on two well-curated datasets.

Experimental results in Table 4 demonstrate that the performance of all code summarization models improves
with the adoption of our proposed methods. Specifically, the following conclusions can be drawn:

1) Compared to the smaller CSN-Java dataset, the overall performance improvement of all baseline models on
the Funcom dataset is more significant. Taking the prevailing Transformer model as an example, after adopting CAE
and ULM, it can achieve score improvements of 7.3%, 6.9%, 6.7%, and 3.2% in terms of BLEU-4, METEOR, ROUGE-L,
and SIDE, respectively. More significantly, collaboratively utilizing both methods could yield 10.0% performance gain
for Transformer regarding the METEOR metric on the CSN-Java dataset, which enables the baseline comparable to
SETCS and the improved NCS.

2) In comparison to the other three metrics, the majority of models exhibit relatively larger absolute score gains
with respect to the ROUGE-L metric on both datasets. We attribute this phenomenon to the extension of the refer-
ence summary by ULM, coupled with the more granular subword representation. This enables the model to capture
more semantic information and contributes to the observed significant improvement.

3) Overall, the NCS model exhibits the least performance improvement following the adoption of the proposed
methods. This outcome is reasonable given that the multiple identical expansion results introduced by CAE could
potentially interfere with the copying mechanism employed by NCS. Furthermore, both methods, particularly ULM,
might increase the code length. Any content that exceeds the maximum code length limitation is truncated during
the stages of model training and inference, which could lead to the loss of crucial information.

5.2 | Ablation Experiments

Table 5 presents the experimental results of the Transformer and SETCS models after incorporating CAE, ULM, and
both methods, separately, on two different datasets. The primary distinction between the two sets of ablation ex-
periments lies in the fact that only the datasets are modified in the first set of experiments, whereas in the latter
set, modifications are also made to the models. Besides, performance of the Transformer model can be seen as the
ablation result of SETCS without the feature fusion network.

In ablation experiments results of the first group, it is clearly that both methods can improve the performance of
Transformer to various degrees, among which ULM plays a more important role. The combination of two methods
could bring further improvements in terms of almost all textual similarity-based evaluation metrics, where the minor
degradation of the METEOR and ROUGE-L metrics on CSN-Java can be neglected as difference of the absolute value
is less than 0.1. Notably, on the CSN-Java dataset, for both Transformer and SETCS, the proposed ULM could bring
about the best improvement for the semantic similarity-based SIDE metric. In fact, compared with the traditional split
method, code summarization models adopting ULM tokenizers have better evaluation results on reference summaries
whatever before and after tokenization. Moreover, the experimental results of ‘Transformer w/ Both’ with 30k vocab-
ulary on the Funcom dataset are still better than that with a 50k vocabulary. All these findings further prove that CAE
and ULM can effectively introduce and expose more critical semantic information, which plays a key role in improving
model’s performance. In addition, when testing ULM tokenizers in preliminary experiments, we found that tokeniz-



Liang et al. 21

TABLE 5 Ablation experiment results of Transformer and SETCS on two datasets.

Model CSN-Java Funcom
BLEU-4 METEOR ROUGE-L SIDE BLEU-4 METEOR ROUGE-L SIDE

Transformer 16.65 12.76 28.92 83.55 25.11 17.31 37.60 84.06
Transformer w/ CAE 17.13 13.38 30.20 84.98 25.47 17.50 38.14 84.31
Transformer w/ ULM 17.42 14.13 30.87 85.36 25.86 17.87 38.79 85.08
Transformer w/ Both 17.60 14.04 30.82 84.83 26.95 18.51 40.12 86.72

SETCS w/o CAE 17.84 13.73 31.19 85.89 27.79 19.66 41.68 88.15
SETCS w/o ULM 17.96 14.00 31.61 85.73 27.71 19.64 41.65 88.14

SETCS 18.14 13.96 31.66 85.78 27.81 19.62 41.72 88.28

ers trained with a smaller vocabulary will tokenize most nouns in plural forms, resulting in substantial score gains in
terms of the ROUGE-L metric and decreased performance on other metrics, which indicates that the granularity of
subword segmentation is not the finer the better. Therefore, when training a tokenizer for the code summarization
model, factors such as size of the desired vocabulary and length limitations of model’s input and output should be
comprehensively considered.

For the second group of ablation experiments’ results, it’s interesting that CAE plays a more significant role in im-
proving performance on the CSN-Java dataset, while ULM plays a more significant role in the Funcom dataset. Each
of the two methods significantly boosts the performance of all metrics compared to the Transformer baseline, which
indicate the effectiveness of the feature fusion network equipped by SETCS. However, the collaboration of the two
methods yield relatively fewer improvements across most evaluation metrics, which contradicts the earlier findings.
We speculate that the customized network operated in SETCS is capable of learning more specific transformations
but struggles with learning complex patterns when both methods are combined. More specifically, the modification of
code snippets introduced by CAE is fixed in most circumstances as its algorithms are predefined to expand abbrevia-
tions for parameters or variables in very specific places, while modifications brought by ULM are randomly distributed
in different locations of the code. In short, this phenomenon can be attributed to the limitations of the feature fusion
strategy employed by SETCS, and more effective approaches are yet to be discovered. Actually, we have explored
many other feature fusion strategies but reaped relatively fewer improvements compared to method presented in this
paper. These tested strategies include concatenating embeddings of both original and modified code sequences from
another dimension, concatenating embeddings of original and differences between both code sequences, concatenat-
ing both code representations directly, and utilizing different customized networks when transforming concatenated
embeddings to code representations. Therefore, we leave this challenge for future research. For the purpose of bet-
ter illustration and broader applicability, experiments in the subsequent sections are conducted on the Transformer
baseline.

5.3 | ULM Tuning & Comparison

In order to determine the appropriate ‘k’ value for the Top-k subword combination candidates, as discussed in Section
3.2, we carry out experiments using the ‘Transformer w/ ULM’ model on CSN-Java, with ‘k’ values ranging from 1 to
13 and the span set to 2. Additionally, we conduct comparative experiments to further examine the effects of the



22 Liang et al.

introduced ULM algorithm against basic subword segmentation algorithms. The choice to perform these experiments
on CSN-Java instead of Funcom is primarily driven by considerations of time efficiency.

F IGURE 6 Experimental results of ‘Transformer w/ ULM’ with different k values on CSN-Java.

TABLE 6 Experimental results of Transformer with different subword segmentation algorithms on CSN-Java.
Model BLEU-4 METEOR ROUGE-L SIDE

Transformer 16.65 12.76 28.92 83.55
Transformer w/ BPE_Basic 17.21 13.21 30.12 84.59
Transformer w/ ULM_Basic 17.15 13.56 30.53 84.62
Transformer w/ ULM_Top-9 17.42 14.13 30.87 85.36

Figure 6 displays the changing curves of four evaluation metrics, where the trend of all curves goes down, up, and
then down. Table 6 shows experimental results regarding different subword segmentation algorithms, where results of
the Transformer baseline, Transformer with the basic BPE algorithm, Transformer with the basic ULM algorithm, and
Transformerwith the introducedULMalgorithm are listed from up to down. The essential algorithms operated by both
basic and introduced ULM are the same, but the latter further optimized the training and tokenization procedures of
code-specific tokenizers to obtain semantic-preserved results. Besides, the basicWordPiece algorithm is not involved
since it is not open-sourced. The ‘k’ value of the introduced ULM algorithm is set to 9 in all experiments on CSN-Java,
as the overall performance of ‘Transformer w/ ULM’ by selecting tokenization results from Top-9 candidates is proved
to be the best.



Liang et al. 23

Overall, all subword segmentation algorithms could significantly improve the performance of Transformer in terms
all metrics, which is expected. Specifically, the difference between each pair of subword segmentation algorithms is
relatively small in terms of BLEU-4, but differences are obvious when it comes to other three metrics. The tactic of
selectingmost semantic-preserved tokenization results fromTop-k subword combination candidates introduced in this
paper is proved to bemore effective compared with the direct adoption of basic ULM algorithm, which performance is
sightly inferior to the introducedULMwith k set to 1. To sumup, the introduction of subword segmentation algorithms
can bring about remarkable improvements for code summarizations models, and the performance could be further
upgraded if more code-related semantic information can be preserved.

5.4 | Example Analysis

Table 7 illustrates two examples from Funcom. The last four rows of the table list generated summaries of the Trans-
former model before and after using the proposed method(s).

TABLE 7 Two illustrative examples from the Funcom dataset.
Function ID 27906163 44895355

Code
public SummaryItem getSummary

ItemForMsg(int msgNumber ){

return (SummaryItem)

summaryItems.get( msgNumber -1);

}

public void setFeedbacktype

(String feedbacktype ){

setPropertyString(QTI_RDFS+

" feedbacktype )", feedbacktype ));

}

Summary return the summary item info for a
particular message number .

sets the feedbacktype to the given
string.

Transformer returns the summary item for the given
msg number . sets the name of the qti rdfs property.

Transformer w/ CAE returns the summary item for a given
message number . sets the <unk>property.

Transformer w/ ULM returns the summary item for the given
message number . sets the feedback type property.

Transformer w/ Both returns the summary item for the given
message number . sets the feedback type .

For the first code snippet, after using CAE to expand the abbreviation ‘msg’ nested in the formal parameter
‘msgNumber’ to ‘message’ Transformer accurately generates the corresponding summaries for the expanded formal
parameter ‘message number’. It is interesting that ULM also enables the model to generate the correct summary for
the abbreviated formal parameter. We speculate the code summarization model has the potential to generate the
corresponding full names for corresponding abbreviations, and semantic information exposed by trained tokenizers
convinces the model that the full name of abbreviation ‘msg’ in the code should be ‘message’. In other words, both
methods effectively enhanced the ability of language alignment for code summarization models.



24 Liang et al.

When it comes to the second code snippet, although the formal parameter ‘feedbacktype’ appears multiple times
in the code, it is still being identified as <unk> due to its overall low frequency in the dataset, which is reflected in the
summary generated by ‘Transformer w/ CAE’. Instead of generating <unk> with a relative small probability, the vanilla
Transformer finally chose ‘qti rdfs’ as the summary, which appears in the code but has nothing to do with the actual
functionality of the code. After tokenizing ‘feedbacktype’ into ‘feedback type’ using the Unigram subword algorithm,
the model correctly understood its meaning and accurately generated a corresponding summary for it.

In summary, the methods proposed in this paper improve the performance of the code summarization model at
the semantic level, and the two methods complement each other. Code abbreviation expansion eliminates some rare
words. It also avoids the unigram subword algorithm tokenizing them into overlong subwords. The subword algorithm
can expose more abbreviation information. If the abbreviation ‘img’ nested in the identifier ‘imgname’ contained in
the code snippet of Table 1 is accurately tokenized and expanded, code summarization models will be more likely to
generate the correct summary ‘image’ for the code. Therefore, the subword segmentation algorithm also has practi-
cal implications for the study of abbreviation expansion, and proposing more advanced techniques to combine the
copying mechanism with methods proposed in this paper is worthy of further exploration as well.

6 | CONCLUSION AND FUTURE WORK

In this paper, we propose two methods to enhance the semantic performance of code summarization models. By
expanding abbreviations within identifiers, we eliminate the uncertainty of the corresponding semantic information
and allow the model to focus more on the identifiers themselves rather than their types. Moreover, by leveraging
the Unigram subword segmentation algorithm, we train code-specific tokenizers to tokenize code into more granular
subword sequences, which enables the code summarizationmodel to capture more critical information during training
and inference stages. Experimental results from three typical code summarization models and the presented SETCS
on two datasets demonstrate the effectiveness of our proposed methods.

Future works include:
1) Incorporate advanced feature fusion techniques into SETCS to unlock the full potential of our proposed meth-

ods, or employ the framework to verify other automatic code summarization approaches at either the semantic or
structural level.

2) Explore further how expanding code abbreviations in different proportions and types impacts the performance
of code summarization models, and how the performance is influenced by different subword segmentation algorithms
with varying vocabulary sizes.

3) Apply themethods proposed in this paper to pre-trained codemodels and other program understanding or gen-
eration tasks, particularly in conjunction with prompt learning [60] or meta-learning techniques. This could potentially
enhance the efficiency and performance of these models and tasks.

To facilitate future research, we have made datasets used in experiments, as well as the source code of SETCS,
publicly available at https://github.com/Hugo-Liang/SETCS.

CONFLICT OF INTEREST

The authors have no competing interests to declare that are relevant to the content of this paper.

https://github.com/Hugo-Liang/SETCS


Liang et al. 25

DATA AVAILABILITY STATEMENT

The authors declare that the data supporting the findings of this study are available within the paper.

ORCID

Yuguo Liang https://orcid.org/0009-0002-8738-2891

REFERENCES
[1] Storey MA. Theories, methods and tools in program comprehension: Past, present and future. In: 13th International

Workshop on Program Comprehension; 2005. p. 181–191.
[2] He H. Understanding Source Code Comments at Large-Scale. In: Proceedings of the 2019 27th ACM Joint Meeting

on European Software Engineering Conference and Symposium on the Foundations of Software Engineering New York,
NY, USA: Association for Computing Machinery; 2019. p. 1217–1219.

[3] Moreno L, Marcus A. Automatic Software Summarization: The State of the Art. In: Proceedings of the 40th Interna-
tional Conference on Software Engineering: Companion Proceeedings New York, NY, USA: Association for Computing
Machinery; 2018. p. 530–531.

[4] Rai S, Belwal RC, Gupta A. A Review on Source Code Documentation. ACM Trans Intell Syst Technol 2022 jun;13(5).
[5] Iyer S, Konstas I, Cheung A, Zettlemoyer L. Summarizing Source Code using a Neural Attention Model. In: Proceedings

of the 54th Annual Meeting of the Association for Computational Linguistics Berlin, Germany: Association for Compu-
tational Linguistics; 2016. p. 2073–2083.

[6] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is All You Need. In: Proceedings of
the 31st International Conference on Neural Information Processing Systems Red Hook, NY, USA: Curran Associates
Inc.; 2017. p. 6000–6010.

[7] Niu C, Li C, Luo B, Ng V. Deep LearningMeets Software Engineering: A Survey on Pre-TrainedModels of Source Code. In:
Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence International Joint Conferences
on Artificial Intelligence Organization; 2022. p. 5546–5555.

[8] LeClair A, Jiang S, McMillan C. A neural model for generating natural language summaries of program subroutines. In:
Proceedings of the 41st International Conference on Software Engineering IEEE Press; 2019. p. 795–806.

[9] Newman CD, Decker MJ, Alsuhaibani RS, Peruma A, Kaushik D, Hill E. An Empirical Study of Abbreviations and Expan-
sions in Software Artifacts. In: 2019 IEEE International Conference on Software Maintenance and Evolution; 2019. p.
269–279.

[10] Sharma R, Chen F, Fard F. LAMNER: Code comment generation using character language model and named entity
recognition. In: Proceedings of the 30th IEEE/ACM International Conference on Program Comprehension New York,
NY, USA: Association for Computing Machinery; 2022. p. 48–59.

[11] Cheng W, Hu P, Wei S, Mo R. Keyword-Guided Abstractive Code Summarization via Incorporating Structural and Con-
textual Information. Inf Softw Technol 2022 oct;150(C).

[12] Hu X, Li G, Xia X, LoD, Jin Z. Deep Code Comment Generationwith Hybrid Lexical and Syntactical Information. Empirical
Software Engineering 2020 may;25(3):2179–2217.

[13] Ahmad W, Chakraborty S, Ray B, Chang KW. A Transformer-based Approach for Source Code Summarization. In:
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics Online: Association for Com-
putational Linguistics; 2020. p. 4998–5007.

https://orcid.org/0009-0002-8738-2891


26 Liang et al.

[14] Hu X, Li G, Xia X, Lo D, Jin Z. Deep code comment generation. In: Proceedings of the 26th Conference on Program
Comprehension New York, NY, USA: Association for Computing Machinery; 2018. p. 200–210.

[15] Zhou Z, Yu H, Fan G, Huang Z, Yang X. Summarizing Source Code with Hierarchical Code Representation. Inf Softw
Technol 2022 mar;143(C).

[16] Tang Z, Shen X, Li C, Ge J, Huang L, Zhu Z, et al. AST-trans: Code summarization with efficient tree-structured attention.
In: Proceedings of the 44th International Conference on Software Engineering New York, NY, USA: Association for
Computing Machinery; 2022. p. 150–162.

[17] Zhang J, Wang X, Zhang H, Sun H, Wang K, Liu X. A novel neural source code representation based on abstract syntax
tree. In: Proceedings of the 41st International Conference on Software Engineering IEEE Press; 2019. p. 783–794.

[18] Lin C, Ouyang Z, Zhuang J, Chen J, Li H, Wu R. Improving Code Summarization with Block-wise Abstract Syntax Tree
Splitting. In: 2021 IEEE/ACM 29th International Conference on Program Comprehension; 2021. p. 184–195.

[19] Liu S, Chen Y, Xie X, Siow JK, Liu Y. Retrieval-Augmented Generation for Code Summarization via Hybrid GNN. In:
International Conference on Learning Representations; 2021. .

[20] Wu H, Zhao H, Zhang M. Code Summarization with Structure-induced Transformer. In: Findings of the Association for
Computational Linguistics: ACL-IJCNLP 2021 Online: Association for Computational Linguistics; 2021. p. 1078–1090.

[21] Gao S, Gao C, He Y, Zeng J, Nie L, Xia X, et al. Code Structure–Guided Transformer for Source Code Summarization.
ACM Trans Softw Eng Methodol 2023 feb;32(1).

[22] Guo J, Liu J, Liu X, Li L. Summarizing source code through heterogeneous feature fusion and extraction. Information
Fusion 2024;103:102058.

[23] Hu X, Li G, Xia X, Lo D, Lu S, Jin Z. Summarizing Source Code with Transferred API Knowledge. In: Proceedings of the
27th International Joint Conference on Artificial Intelligence AAAI Press; 2018. p. 2269–2275.

[24] Shahbazi R, Sharma R, Fard FH. API2Com: On the Improvement of Automatically Generated Code Comments Using API
Documentations. In: 2021 IEEE/ACM 29th International Conference on Program Comprehension; 2021. p. 411–421.

[25] Xie R, Ye W, Sun J, Zhang S. Exploiting Method Names to Improve Code Summarization: A Deliberation Multi-Task
Learning Approach. In: 2021 IEEE/ACM 29th International Conference on Program Comprehension; 2021. p. 138–148.

[26] Li M, Yu H, Fan G, Zhou Z, Huang Z. Enhancing code summarization with action word prediction. Neurocomputing
2024;563:126777.

[27] Zhang J, Wang X, Zhang H, Sun H, Liu X. Retrieval-Based Neural Source Code Summarization. New York, NY, USA:
Association for Computing Machinery; 2020. p. 1385–1397.

[28] Wei B, Li Y, Li G, Xia X, Jin Z. Retrieve and Refine: Exemplar-Based Neural Comment Generation. In: Proceedings of
the 35th IEEE/ACM International Conference on Automated Software Engineering New York, NY, USA: Association for
Computing Machinery; 2021. p. 349–360.

[29] Zhou Z, YuH, FanG, Huang Z, Yang K. Towards Retrieval-BasedNeural Code Summarization: AMeta-Learning Approach.
IEEE Transactions on Software Engineering 2023;49(4):3008–3031.

[30] Xie R, Hu T, YeW, Zhang S. Low-Resources Project-Specific Code Summarization. In: Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering New York, NY, USA: Association for Computing Machin-
ery; 2023. .

[31] Guo D, Ren S, Lu S, Feng Z, Tang D, LIU S, et al. GraphCodeBERT: Pre-training Code Representations with Data Flow.
In: International Conference on Learning Representations; 2021. .



Liang et al. 27

[32] Niu C, Li C, Ng V, Ge J, Huang L, Luo B. SPT-Code: Sequence-to-Sequence Pre-Training for Learning Source Code
Representations. In: 2022 IEEE/ACM 44th International Conference on Software Engineering; 2022. p. 01–13.

[33] Feng Z, Guo D, Tang D, Duan N, Feng X, Gong M, et al. CodeBERT: A Pre-Trained Model for Programming and Nat-
ural Languages. In: Findings of the Association for Computational Linguistics: EMNLP 2020 Online: Association for
Computational Linguistics; 2020. p. 1536–1547.

[34] Wang Y, Wang W, Joty S, Hoi SCH. CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code
Understanding and Generation. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing Online and Punta Cana, Dominican Republic: Association for Computational Linguistics; 2021. p. 8696–
8708.

[35] Ahmad W, Chakraborty S, Ray B, Chang KW. Unified Pre-training for Program Understanding and Generation. In:
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies Online: Association for Computational Linguistics; 2021. p. 2655–2668.

[36] Jiang Y, Liu H, Zhang L. Semantic Relation Based Expansion of Abbreviations. In: Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineer-
ing New York, NY, USA: Association for Computing Machinery; 2019. p. 131–141.

[37] Jiang Y, Liu H, Zhu J, Zhang L. Automatic and Accurate Expansion of Abbreviations in Parameters. IEEE Transactions on
Software Engineering 2020;46(7):732–747.

[38] Jiang Y, Liu H, Zhang Y, Niu N, Zhao Y, Zhang L. Which Abbreviations Should Be Expanded? In: Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering New York, NY, USA: Association for Computing Machinery; 2021. p. 578–589.

[39] Jiang Y, Liu H, Jin J, Zhang L. Automated Expansion of Abbreviations Based on Semantic Relation and Transfer Expansion.
IEEE Transactions on Software Engineering 2022;48(2):519–537.

[40] Gage P. A New Algorithm for Data Compression. C Users J 1994 feb;12(2):23–38.
[41] Sennrich R, Haddow B, Birch A. Neural Machine Translation of Rare Words with Subword Units. In: Proceedings of the

54th Annual Meeting of the Association for Computational Linguistics Berlin, Germany: Association for Computational
Linguistics; 2016. p. 1715–1725.

[42] Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, et al., RoBERTa: A Robustly Optimized BERT Pretraining Approach; 2019.
[43] Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, MachereyW, et al., Google’s Neural Machine Translation System: Bridging

the Gap between Human and Machine Translation; 2016.
[44] Kudo T. Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Candidates.

In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics Melbourne, Australia:
Association for Computational Linguistics; 2018. p. 66–75.

[45] Shaw P, Uszkoreit J, Vaswani A. Self-Attention with Relative Position Representations. In: Proceedings of the 2018 Con-
ference of theNorth American Chapter of the Association for Computational Linguistics: Human Language Technologies
New Orleans, Louisiana: Association for Computational Linguistics; 2018. p. 464–468.

[46] Husain H, Wu HH, Gazit T, Allamanis M, Brockschmidt M, CodeSearchNet Challenge: Evaluating the State of Semantic
Code Search; 2020.

[47] Lopes C, Bajracharya S, Ossher J, Baldi P, UCI Source Code Data Sets; 2010.
[48] Allamanis M. The Adverse Effects of Code Duplication in Machine Learning Models of Code. In: Proceedings of the

2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software New York, NY, USA: Association for Computing Machinery; 2019. p. 143–153.



28 Liang et al.

[49] Di Martino S, Maggio V, Corazza A. LINSEN: An efficient approach to split identifiers and expand abbreviations. In:
Proceedings of the 2012 IEEE International Conference on Software Maintenance USA: IEEE Computer Society; 2012.
p. 233–242.

[50] Klein G, Kim Y, Deng Y, Senellart J, Rush A. OpenNMT: Open-Source Toolkit for Neural Machine Translation. In: Pro-
ceedings of ACL 2017, System Demonstrations Vancouver, Canada: Association for Computational Linguistics; 2017. p.
67–72.

[51] Hochreiter S, Schmidhuber J. Long Short-Term Memory. Neural Computation 1997;9(8):1735–1780.
[52] See A, Liu PJ, Manning CD. Get To The Point: Summarization with Pointer-Generator Networks. In: Proceedings of the

55th Annual Meeting of the Association for Computational Linguistics Vancouver, Canada: Association for Computa-
tional Linguistics; 2017. p. 1073–1083.

[53] Wei B, Li G, Xia X, Fu Z, Jin Z. In: Code generation as a dual task of code summarization Red Hook, NY, USA: Curran
Associates Inc.; 2019. .

[54] Papineni K, Roukos S, Ward T, Zhu WJ. BLEU: A Method for Automatic Evaluation of Machine Translation. In: Pro-
ceedings of the 40th Annual Meeting on Association for Computational Linguistics USA: Association for Computational
Linguistics; 2002. p. 311–318.

[55] Banerjee S, Lavie A. METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judg-
ments. In: Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation
and/or Summarization Ann Arbor, Michigan: Association for Computational Linguistics; 2005. p. 65–72.

[56] Lin CY. ROUGE: A Package for Automatic Evaluation of Summaries. In: Text Summarization Branches Out Barcelona,
Spain: Association for Computational Linguistics; 2004. p. 74–81.

[57] Mastropaolo A, Ciniselli M, Penta MD, Bavota G. Evaluating Code Summarization Techniques: A New Metric and an
Empirical Characterization. In: 2024 IEEE/ACM 46th International Conference on Software Engineering Los Alamitos,
CA, USA: IEEE Computer Society; 2024. p. 1002–1002.

[58] Song K, Tan X, Qin T, Lu J, Liu TY. MPNet: Masked and permuted pre-training for language understanding. In: Pro-
ceedings of the 34th International Conference on Neural Information Processing Systems Red Hook, NY, USA: Curran
Associates Inc.; 2020. .

[59] RoyD, Fakhoury S, ArnaoudovaV. Reassessing Automatic EvaluationMetrics for Code Summarization Tasks. In: Proceed-
ings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering New York, NY, USA: Association for Computing Machinery; 2021. p. 1105–1116.

[60] Liu P, Yuan W, Fu J, Jiang Z, Hayashi H, Neubig G. Pre-Train, Prompt, and Predict: A Systematic Survey of Prompting
Methods in Natural Language Processing. ACM Comput Surv 2023 jan;55(9).


	Introduction
	Related Work
	Automatic Code Summarization
	Code Abbreviation Expansion
	Subword Segmentation

	Methods
	Context-based Code Abbreviation Expansion
	Unigram-based Subword Segmentation
	Semantic Enhanced Transformer for Code Summarization

	Experimental Setup
	Datasets
	Exploratory Experiments
	Preliminary Experiments
	Baseline Models
	Evaluation Metrics

	Analysis of Experimental Results
	Method Validation
	Ablation Experiments
	ULM Tuning & Comparison
	Example Analysis

	Conclusion and Future work

