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Code smell is a software quality problem caused by software design flaws. Refactoring code smells 
can improve software maintainability. While prior work mostly focused on Java code smells, only a 
few prior researches detect and refactor code smells of Python. Therefore, we intend to outline a route 
(i.e., sequential refactoring operation) for refactoring Python code smells, including LC, LM, LMC, 
LPL, LSC, LBCL, LLF, MNC, CCC and LTCE. The route could instruct developers to save effort by 
refactoring the smell strongly correlated with other smells in advance. As a result, more smells could 
be resolved by a single refactoring. First, we reveal the co-occurrence and the inter causation between 
smells. Then, we evaluate the smells’ correlation. Result highlights 7 groups of smell with high co-
occurrence. Meanwhile, 10 groups of smell correlate with each other in a significant level of Spearman 
correlation coefficient at 0.01. Finally, we generate the refactoring route based on the association rules, 
we exploit an empirical verification with 10 developers involved. The results of Kendall’s Tau show 
the proposed refactoring route has a high inter-agreement with the developer’s perception. In 
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conclusion, we propose 4 refactoring routes to provide guidance for practitioners, i.e., {LPL→LLF}, 
{LPL→LBCL}, {LPL→LMC}, and {LPL→LM→LC→CCC→MNC}. 

Keywords: Python code smell; co-occurrence; correlation; code refactoring; empirical software 
engineering. 

1.   Introduction 

Code smell is a software quality problem which may not be the direct cause of software 
fault, but hinders software maintenance work. Fowler [1] proposed 22 kinds of code smells 
that violate design rules, which can be divided into three classes according to different 
granularity, i.e., methods, classes, and packages. At present, researchers focus mainly on 
code smell detection for Java projects [2]. However, little is known about Python software 
smell since Python language type and its inherent characteristics as a dynamic language is 
difficult to measure and comprehend [3]. Compared with Java, there are fewer tools for 
Python code smell detection, e.g., Psmell can effectively detect 10 kinds of Python code 
smells [3]. Moreover, it is not possible to use the Java metric threshold directly for Python 
smell detection because of the structural differences in the characteristics of different 
languages (e.g., weakly-typed and strongly-typed), which makes it impossible to use the 
Java metric threshold (e.g., TCC) directly for Python smell detection [3], the details are 
given in Section 2.4. 

As a subsequent process in Software Quality Assurance (SQA) activity, the 
methodologies and strategies to refactor smells are also major concerns of practitioners and 
researchers. As for Java code refactoring, Optimize Streams is implemented as a plug-in to 
the popular Eclipse IDE, which assists developers in writing optimal stream software in a 
semantics-preserving fashion [4]. For Python refactoring, HARP enables holistic analysis 
that spans across computation graphs and their hosting Python code [5]. 

In order to integrate Python smell detection results to practical SQA activities, we 
intend to generate refactoring strategy by revealing potential relationship among Python 
code smells. Our research questions include revealing the relationship between smells and 
a refactoring strategy. Empirical research shows that developers tend to abandon software 
quality static analysis tools [6], because they generate too much uninterpretable results. In 
response, researchers should offer refactoring strategies concerning the priority and 
relationship among design problems such as code smells [7]. In line with prior research, 
Python code smells detection also lacks enough interpretation of detection results [3].   

To make the best use of Python smell detection result, we intend to fill the gap by 
outlining a route for refactoring 10 common Python code smells, the route means 
developer’s sequential refactoring operation for the code smells. The scope of our 
evaluation in code smells includes the most 2 common smells (i.e., Long Parameter List 
(LPL), Long Method (LM)), and other 8 smells occurred in 9 active open-source Python 
projects on GitHub, including 55,206 Python files in 94 versions [3]. The motivation of 
generating a sequential route is to save effort, i.e., after refactoring the smells in the front 
of a route, the smells appear later may also be eliminated [8], otherwise developers may 
spend extra time comprehending more code related to code smells. Thus, we generate the 
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route according to the co-occurrence and correlation among them [9]. To measure the 
validity of the generated route, we investigate the extent of agreement between the 
generated order and novice and experienced developers’ manually generated order by 
calculating Kendall’s Tau [10], which is a rank statistic used to measure the ordinal 
association between two random variables. Then, we verify empirically the validity of the 
generated routes. The relevant descriptions of the 10 Python code smells are shown in 
Table 1. 

Table 1.  Explanation of Python code smells 

Python code smells Description 
Large Class (LC) The class code is too long 
Long Method (LM) The function code is too long 
Long Message Chain (LMC) An overly coupled message chain 
Long Parameter List (LPL) Too many parameters in a function 
Long Scope Chaining (LSC) The nesting level of a function is too deep 
Long Base Class List (LBCL) Too many super classes inherited in one class 
Long Lambda Function (LLF) The code of a lambda function is too long 
Multiply-Nested Container (MNC) A container with multiple nesting 
Complex Container Comprehension (CCC) A container production contains too complex code 
Long Ternary Conditional Expression (LTCE) The code of a ternary function expression is too long 

 
The main contributions and innovations of this paper are as follows: 

 To the best our knowledge, we are the first to generate refactoring guidelines by 
evaluating the co-occurrence and correlation of Python smells. Simultaneously, we 
find the code smells with the highest co-occurrence, and the smells with the highest 
correlation in 9 active open-source Python projects on GitHub. 

 We discover correlated and co-occurred Python smells in quantitative evaluation. 
Meanwhile, we make a comparative study about the smell relationship between Java 
software and Python software. More importantly, we explore the relationship between 
python code smells. 

 We propose a refactoring route to provide guidance for practitioners’ refactoring task. 
Specially, we verify the rationality of the refactoring strategy through Kendall’s Tau 
coefficient. We provide developers with Python smell refactoring route as follows：
{LPL→LLF}, {LPL→LBCL}, {LPL→LMC} and {LPL→LM→LC→CCC→
MNC}. 

The structure of the paper is as follows: Section 2 introduces the background and 
related work, which gives the current research status in this field. Section 3 gives co-
occurrence and correlation of Python code smell. In section 4 we analyze the content and 
results of the experiment, in which we provide a refactoring route for developers. Section 
5 introduces threats to validity. Finally, we conclude the full paper and propose future work. 

2.   Related Work 
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2.1.   Code smell detection 

Code smell is a software quality problem caused by software design flaws or bad 
programming habits. Fowler [1] proposed 22 kinds of code smells, which involve many 
aspects such as method, class and application level.  

Pecorelli [11] et al. studied God Class, Spaghetti Code, Data Class, Large Class and 
Long Method in 13 open-source projects including 125 releases. Metric-based methods 
were applied to compare large-scale machine learning and heuristic methods. Although 
researchers are committed to the study of code smells, they still do not know the extent to 
which the code smell in the software system affects the maintainability of the software. 

Palomba [12] et al. detected 13 code smells in 395 releases of 30 open-source projects, 
then manually verified 17,350 examples, and they found that smells characterized by long 
or complex codes are widely distributed, which possessed significant variability and error-
proneness.  

Tufano [13] et al. conducted a large-scale study on the change history of 200 open-
source projects, and they found that most of the smell instances were introduced when the 
original code was created. Surprisingly, researchers with heavy workload and high release 
pressure are more likely to introduce code smells. Code smells have a long lifecycle and 
are rarely removed directly due to refactoring, on the contrary, refactoring may introduce 
new smells. 

Vavrova [2] et al. studied 5 kinds of Python code smells such as Feature Envy, Data 
Class, Long Method, Long Parameter List and Large Class as well as 4 kinds of anti-
patterns: God Class, Swiss Army Knife, Functional Decomposition and Spaghetti Code, 9 
design flaws in Python source codes are detected. In addition, they developed a design 
defect detection tool for Python code. 

Kessentini et al. [14] found that code smell detection methods can be summarized into 
seven categories: search-based [15], metric-based [16], visualizat- ion [17], symptom [18] 
and manual [19]. Sae-Lim [20] et al. ranked the code smell detection results by considering 
the developer’s current environment, the results showed that coarse-grained code provides 
better ranking than fine-grained code, compared with the context-based smell sorting, smell 
ranking based on severity provides more relevant results.  

2.2.   Smell correlation evaluation 

Bigonha et al. [21] evaluated the software metric threshold for code smell identification 
and software system fault prediction, and identified Large Class and Long Method for Java 
software systems. The research found that the metric threshold is an effective basis for 
evaluating software quality as well as helping developers focus on the category with the 
highest severity of the problem. Vavrova [2] et al. studied the design flaws of Python and 
analyzed Python modules through design flaw detection tools. They found that: the most 
common design flaws are Long Method and the smell of Swiss Army Knife. On the 
contrary, Spaghetti Code and Large Class occur least frequently. 
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Metric-based code smell detection methods have been widely applied. Padilha [22] 
studied whether it can detect three types of smells: Divergent Change, Shotgun Surgery, 
and God Class. The results show that in general, paying attention to the metric threshold 
contributes developers to detect code smells. But the selection of the metric threshold is 
still very controversial. In order to perform smell detection and fault prediction on object-
oriented metric thresholds, Bigonha et al. [21] detected 5 smells on 12 open-source Java 
systems, performed metrics at each class level such as DIT, LCOM, NOF, NOM, NORM, 
NSC, NSF, NSM, SIX and WMC. Liu et al. [23] have proposed a method based on deep 
learning to detect Feature Envy, evaluated on 7 open-source Java applications. The results 
show that it is better than the latest method in detecting Feature Envy. Terra et al. [24] 
published a data set called Qualitas.class, which provided compiled Java projects for 111 
systems included in the dataset, aiming to provide researchers with detecting Java code 
smells and refactoring work. 

Most researchers focus on smell detection in Java projects, but there is little research 
literature on Python code smell. Therefore, this paper is based on the research of Chen et 
al. [3] to reveal the co-occurrence and correlation of the detected 10 Python code smells. 
On the basis, we provide developers with a refactoring route in order to reduce workload, 
which is verified manually by both novice and experienced developers. The statistical 
results of Kendall’s Tau show that the strategy we proposed has a high inter-agreement 
with the developer’s perception. 

2.3.   Association rule mining of code smells 

Agrawal et al. [9] proposed an efficient algorithm to generate association rules between 
database items, combining data mining and association rules for the first time. Alfadel et 
al. [25] applied association rule analysis methods to evaluate whether the design pattern is 
consistent with code smells of different granularity levels are related, the results show that 
there is a positive correlation between design patterns and code smells. Palomba et al. [26] 
used association rule mining to discover the co-occurrence relationship between code 
smells. On the one hand, they emphasized some predictable co-occurrence relationships, 
such as Long Method and Spaghetti Code, Long Method and Long Parameter List, they 
also reveal co-occurrence relationships that some studies have missed, finding that 
Message Chains and Refused Bequest also have co-occurrence relationships. 
   Palomba et al. [26] detected 13 types of smells based on 30 Java software systems, 
found that 6 groups of code smells are frequently co-occurring such as {Message Chain, 
Spaghetti Code}, {Message Chain, Complex Class}, {Message Chain, God Class}, 
{Message Chain, Refused Bequest}, {Long Method, Spaghetti Code} and {Long Method, 
Feature Envy}. Jaafar et al. [29] studied the co-occurrence of anti-patterns and clones as 
well as the relationship between co-occurrence and class prone to failure, results showed 
that the percentage of co-occurrences involving anti-patterns and clones was between 63% 
and 32%, class prone to failure with anti-pattern and clone co-occurrence is significantly 
increased. Fontana et al. [30] evaluated co-occurrence smells in 74 systems in the 
Qualitas.class data set [31], found that code smells tend to cluster together and interact in 
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multiple ways, and that smell clusters have a greater impact on the maintainability of 
software than isolated smells. 

2.4.   Metric threshold comparison of Python and Java 

Table 1 shows 10 Python code smells, in which LPL, LM, LSC, LC and LMC are code 
smells that can be applied to multiple object-oriented programming languages such as Java, 
Python, JavaScript, etc., while LBCL, LLF, LTCE, CCC and MNC belong to Python code 
smell. 

Mayvan [27] et al. compared all the metric thresholds about Java in the past 20 years, 
then outlined the standards code smells metrics. Fard [28] et al. proposed a metric-based 
method to detect JavaScript code smells automatically, in which LSC smell measurement 
Standards also apply to the Java language. This section compares the metrics of Java code 
smell and Python code smell. The Java metrics involved in LPL, LM, LSC, LC, and LMC 
code smell are shown in Table 2. 

Table 2.  Catalog of Java metrics 

Java metric Description 
NOP Number of Parameters 
MLOC Line of Code in a Method 
VG McCabe's Complexity 
NOLV Number of Local Variables 
MNOB Maximum Number of Branches 
LSC Length of Scope Chain 
WMC Weighted Method Count 
ATFD Access to Foreign Data 
TCC Tight Class Cohesion 
CLOC Line of Code in a Class 
NOM Number of Methods in a Class 
NOF Number of Fields 
MCC Method Calling Chain 
MLOC Line of Code in a Method 

 

Table 3.  Catalog of Python metrics 

Python metric Description 
PAR Number of Parameters 
MLOC Method Lines of Code 
DOC Depth of Closure 
CLOC Class Lines of Code 
LMC Length of Message Chain 
NBC Number of Base Classes 
NOC Number of Characters 
NOO Number of Operators and Operands 
NOL Number of Lines 
NOFF Number of Clauses and Filter Expressions 
LEC Length of Element Chain 
DNC Depth of Nested Container 
NCT Number of Container Types 
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Different from traditional object-oriented metrics, Chen et al. [3] defined 8 new metrics 
to measure Python code smell: NBC, NOC, NOO, NOL, NOFF, LEC, DNC, and NCT. 
The metrics involved in 10 Python code smells are shown in Table 3. 

Mayvan et al. [27] proposed a multi-step process using quality metrics and refactoring 
opportunities to detect Java code smells, and conducted a systematic literature review of 
all code smells formally defined using quality metrics in the field. The selection of the thre- 
shold by looking for a threshold with recognition higher than 50%, if the threshold is not 
unified, then choose the loosest threshold in the literature.  
   Chen [3] et al. selected the Python smell threshold by comparing the threshold based 
on experience, the threshold based on statistic and the threshold based on tuning machine. 
Among them, the threshold selection based on the tuning machine achieves the best 
accuracy, which is used as the standard threshold. 

2.5.   Detection strategy of Python and Java 

Mayvan et al. [27] outlined the metrics and threshold standards of Java code smell. 
Accordingly, this section detects five types of Java code smell detection strategies 
including LPL, LM, LSC, LC, and LMC. In addition, 10 Python code smell detection 
strategies are compared with the above. The results show that the detection strategies for 
smells that exist in both Java and Python code are almost the same. However, the detection 
strategy of code smell only belongs to Python contains more threshold metrics for logical 
judgment.  

Table 4.  Java code smell detection strategy 

Java smell Detection strategy 
LPL NOP > 5 
LM MLOC > 50 | VG >5 | ((NOP > 4 | NOLV > 4) & (MNOB > 4)) 
LSC LSC > 3 
LC (WMC > 47 & ATFD > 5 & TCC < 0.33) | CLOC > 100 | NOM > 14 | NOF > 8 
LMC MCC > 3 

 

Table 5.  Python code smell detection strategy 

Python smell Detection strategy 
LPL PAR ≥ 5 
LM MLOC ≥ 52 
LSC DOC ≥ 4 
LC CLOC ≥ 37 
LMC LMC ≥ 4 
LBCL NBC ≥ 3 
LLF (NOC ≥ 73) & ((PAR ≥ 4) | (NOO ≥ 15)) 
LTCE (NOC ≥ 101) | (NOL ≥ 3) 
CCC ((NOC ≥ 92) & (NOFF ≥ 3)) | (NOO ≥ 22) 
MNC (LEC ≥ 3) | ((DNC ≥ 3) & (NCT ≥ 2)) 
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Chen [3] et al. detected 10 Python code smells based on metric threshold strategy of 
the tuning machine, evaluated the abused code smells of dynamic type, found that dynamic 
type behaviors implied potential threats. In addition, they implemented a positioning 
method to identify performance-related code smells in the software, which are sorted in 
order of priority. In order to compare the difference between detection strategy of Python 
and Java, we summarized the results as follows. Table 4 and Table 5 respectively show the 
detection strategy of Java code smell and Python code smell. 

3.   Co-occurrence and Correlation of Python Code Smell 

3.1.   Dataset construction 

The original code smell dataset can be found on GitHub from Chen [3] et al, which is 
collected through Python smell detection tool named Psmell. In order to reveal the 
relationship between smells, we grouped the related smells in each project and got the 
smelly files, then we label files with smell relations. The division of smelly groups is 
explored by combining two or more of the 10 Python code smells. The dataset collection 
process is based on popularity, which contains 9 active open-source Python projects on 
GitHub. Projects include 55,206 Python files, the size of the project can meet the needs of 
research at present.  

The data collection process includes data preprocessing, association rule mining, and 
Spearman correlation coefficient analysis. First, in order to obtain valid data, we extract 
the smelly files (i.e., python files with code smell) from 9 Python projects involving various 
versions. Second, we label the smelly files by "1" to indicate the presence of smell, and "0" 
to represent there is no smell in files. Since positive samples are sparsely distributed, it is 
necessary to merge the various versions with the project as the category. Third, we combine 
the 10 kinds of code smells in pairs. If there exists no smell group in all projects, the smell 
group will be removed. Fourth, we explore the relationship between smells through 
association rules. The support rate indicates the degree of co-occurrence between smells,  

data set

extract smelly 
files 

version merge

label

extract smelly 
files

version merge

smell group

smell group

support

confidence

smell frequency

smell 
correlation

smell co-
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correlation
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no
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Fig. 1.  Flow chart of co-occurrence and correlation evaluation of smells 
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and confidence rate reveals the causal relationship between smells. Finally, the correlation 
between smells is obtained by Spearman’s correlation coefficient. If the correlation 
between smells is significant, and the group of smells appeared in multiple projects, it 
indicates a higher degree of correlation. The co-occurrence and correlation evaluation 
process of Python code smell is shown in Fig. 1. 

3.2.   Spearman correlation 

Palomba et al. [32] designed and evaluated a fault prediction model for smell perception, 
using Spearman rank correlation and variance expansion factor function to study the 
multicollinearity of the model. O’brien et al. [33] elaborated that the variance expansion 
factor and tolerance are widely used measures in the study of multicollinearity between 
independent variables. Researchers are able to reduce collinearity by eliminating one or 
more variables. This paper focuses on the correlation between smells but does not involve 
the establishment of models, so the Spearman correlation coefficient is mainly applied to 
indicate the degree of correlation between smells. 
   By calculating the Spearman correlation coefficient between smells, the significant 
smells indicate a high degree of correlation between smells. Because of the significant 
differences between projects, Therefore, we combined 9 projects to indicate the most 
frequent and significantly correlated smell groups to point the high degree of correlation 
of smells. As shown in Eq. (1): 

𝜌 =  1 −
∑

( ) 
                           (1) 

In which n is the qualities of data, and 𝑑  indicates the difference between two data 
orders. 

3.3.   Association rule mining 

Association rules used to discover the degree of co-occurrence between smells. The 
specific expression of association rules is as follows: I = {i1, i2, ..., in} is a set of n attributes 
called items, which indicate the existence of attributes in the element (i.e., the items of I). 
T = {t1, t2, ..., tm} is a set of m transactions (i.e., the set of all the elements), association 
rules are defined as the implication formula of X=>Y, where X, Y ⊆ I, and X∩Y = ∅. Set 
T refers to the composition of all the methods of the specific system under study, and set I 
refers to the specific smell indicated in each project. If two code smells affect the same 
Python file at the same time, it is considered that there may be a co-occurrence relationship 
between them. Specifically, for two disjoint code smells CSleft and CSright, if they have a co-
occurrence relationship, it can be expressed by the implicit expression of association rule 
CSleft => CSright, that is, if the Python file is affected by CSleft, so the same Python file should 
also be affected by CSright. In this paper, the Support obtained by association rule indicates 
the occurrence frequency of the smell groups, as shown in Eq. (2). Confidence is used to 
explain the causal relationship between smell groups, in other words, the appearance of a 
certain smell often indicates the appearance of another smell, which as shown in Eq. (3): 
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𝑆𝑢𝑝𝑝𝑜𝑟𝑡 =  
|  ∪ |

                      (2) 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =  
|  ∪ |

| |
                    (3) 

Among them, T is the total number of Python files in the system under study, called 
transactions, by applying the Apriori algorithm [9] mining association rules, the minimum 
effective Support and Confidence can be set in the algorithm. 

Studying one kind of code smell in the Python files may imply the existence of another 
kind of smell, and the frequency of its appearance can be evaluated, we can make a certain 
code smell as CSi, then calculate the percentage of the number of times that the smell co-
occurs with another code smell CSj in the Python file. Eq. (4) used to express the co-
occurrence frequency of two smells: 

  𝑐𝑜 − 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 , =
|   |

| |
, 𝑖 ≠ 𝑗                (4) 

In which |CSi| is the number of times the smell CSi appears, and |CSiΛCSj| means the 
frequency of the smell CSi and CSj appear at the same time. 

3.4.   Kendall's Tau 

Kendall’s Tau is a rank statistic used to measure the ordinal association between two 
random variables [10], which can be expressed as follows: Let (𝑥 , 𝑦 ), …, (𝑥 , 𝑦 ) be a 
set of observations of the joint random variables X and Y, such that all the values of (𝑥 ) 
and (𝑦 ) are unique (ties are neglected for simplicity). Any pair of observations (𝑥 , 𝑦 ) and 
(𝑥 , 𝑦 ), where 𝑖 < 𝑗, are said to be concordant if the sort order of (𝑥 , 𝑥 ) and (𝑦 , 𝑦 ) 
agrees: that is, if either both 𝑥  > 𝑥  and 𝑦  > 𝑦  holds or both 𝑥  < 𝑥  and 𝑦  < 𝑦 ; 
otherwise they are said to be discordant. The Kendall 𝜏 coefficient is defined as Eq. (5): 

𝜏 = 
(    )  (    )

(𝑛
2
)

         (5) 

   Where 
𝑛
2

=  
( )( )

 is the binomial coefficient for the number of ways to 

choose two items from n items. The Kendall’s Tau coefficient are defined as follows in 
Eq. (6): 

Kendall’s τ Agreement =  

𝑤𝑒𝑎𝑘,               𝑖𝑓 |𝜏| ≤ 0.3                    

𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒,     𝑖𝑓 0.3＜|𝜏| ≤ 0.6         

 𝑠𝑡𝑟𝑜𝑛𝑔,           𝑖𝑓 |𝜏|＞0.6                      

    (6) 

4.   Experiment and analysis 

The goal of our research is to generate refactoring strategy by revealing potential 
relationship among Python code smells, with the purpose of integrating Python smell 
detection results to practical SQA activities. To these ends, we propose 4 research questions 
as follows: 
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 RQ1: Which Python smells co-occur most frequently with each other? 
The measurement can reflect the co-occurrence relationship of smells by 

calculating the number of code smells in each Python file, then we compare the 
percentages in Python files that are affected by a single smell and two or more smells. 

 RQ2: Which Python code smells have strongest correlation with each other? 
Since the sample set involves 94 versions, and the obtained positive samples are 

relatively rare, each Python file is regarded as a sample. then the positive samples 
with the code smell with the co-occurrence relationship are extracted, after that the 
Spearman correlation coefficient is used to evaluate the degree of correlation between 
smells in each project. 

 RQ3: Which co-occurred python code smells have strong associations relationship? 
What is the inter causation between them? 

The association rules are used to discover the co-occurrence relationship between 
smells. Moreover, the strong association between smells can be further extracted 
through the lift of association rules. Thus, the priority order of the appearance of 
smells could be revealed. 

 RQ4: Can we generate a route for refactoring Python smells that is close to developers’ 
perception? 

To ensure the accuracy of the experimental result, we invited 10 developers to 
generate smell's refactoring route based on the association rules. Kendall’s Tau shows 
that the strategy we proposed has a high inter-agreement with the developer’s 
perception. 

4.1.   Experiment environment 

The experiment is based on 94 versions of 9 Python projects with high attention, including 
55,206 Python files, the project names are: Ansible, Boto, Django, Ipython, Matplotlib, 
Nltk, Numpy, Scipy, and Tornado. Meanwhile, the experimental environment is: 8.00GB 
RAM, Inter(R) Core(TM) i7-9750H CPU @ 2.60GHz 2.59GHz, 8,705 Python files with 
smell were extracted through the Jupyter Notebook development environment, then label 
it and complete the experiment with SPSS. The project description is shown in Table 6. 

Table 6.  Project description table 

Project Line of code Number of files Description 
Ansible 44,086 394 A new automated operation and maintenance tool 
Boto 119,905 703 Python interface for Amazon Web Services 
Django 214,997 2,106 Advanced Web Application Framework 
Ipython 105,522 788 Interactive computing system of Python 
Matplotlib 135,459 815 2D drawing library of Python 
Nltk 73,053 263 Python-based natural language processing toolset 
Numpy 131,854 361 Python scientific computing basic package 
Scipy 173,714 522 Set of tools for scientific computing 
Tornado 28,455 108 Web server architecture and asynchronous network library 
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4.2.   Experimental data 

Since the experimental data is based on 9 Python projects, and the number of smelly files 
contained in each project varies greatly, the projects with more Python files are divided 
into multiple sets of data as much as possible, the distribution of 10 kinds of code smells 
in the data set are shown in Fig. 2. 

 

Fig. 2.  Distribution of the number of 10 code smells in the data set 

It can be found from Fig. 2 that in terms of a single smell, LPL, LM and LMC are the 
three most frequent smells while the smells of LSC, LBCL, LLF and LTCE are less 
frequent, which reveals the point of smell refactoring. 

Table 7.  The distribution of several code smells with the highest co-occurrence frequency in the data set 

Smell 
group 

LPL LM LC LMC LLF CCC MNC Quantity Percentage (%) 

1 1 1 0 0 0 0 0 733 29.27 
2 1 0 1 0 0 0 0 222 8.87 
3 0 1 1 0 0 0 0 196 7.83 
4 1 0 0 1 0 0 0 184 7.35 
5 0 1 0 0 0 0 1 102 4.07 
6 1 1 1 0 0 0 0 267 10.66 
7 1 0 1 1 0 0 0 52 2.08 
8 1 1 0 1 0 0 0 51 2.04 
9 1 1 0 0 0 0 1 47 1.88 
10 1 1 0 0 0 1 0 36 1.44 
11 0 1 1 1 0 0 0 36 1.44 
12 1 1 1 1 0 0 0 24 0.96 
13 1 1 1 0 0 1 0 18 0.72 
14 1 1 1 0 1 1 1 11 0.44 
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The Python files in the project are often accompanied by the existence of two or more 
smells. Table 7 shows the distribution of several code smells (“1” means smell exists and 
“0” means absent) with the highest co-occurrence frequency in the experimental data 
Through Eq. (4). Among them, LPL and LM are the smell groups with the highest degree 
of co-occurrence, at the same time, the co-occurrence frequencies of {LPL, LC}, {LM, 
LC}, and {LPL, LMC} are also followed closely. 

4.3.   Experimental results and analysis 

This section answers RQ1-RQ4 based on the experimental results. 
RQ1: Which Python smells co-occur most frequently with each other?  
Table 8 combined with Eq. (2) gives the distribution of the co-occurrence frequency of 

Python code smell through pairwise combination, the smell groups with a low degree of 
co-occurrence were deleted. The degree of Support of association rules can well reflect the 
degree of co-occurrence between smells, the experimental results show that there are 7 
pairs of smells with the highest co-occurrence frequency. The smell group of {LPL, LM} 
topped the list, followed by {LPL, LC}, {LPL, LMC}, {LM, LC}, {LM, CCC}, {LM, 
MNC} and {LC, MNC}. 

Code smells have co-occurrence relationship among each other by nature [26], i.e., the 
appearance of a certain smell is usually accompanied by the occurrence of another code 
smell. This relationship can be identified by the Confidence of the association rule. Table 
9 is derived from Eq. (3) to obtain the Confidence between the smells in 9 projects (bold 
fonts with Confidence above 0.5). The experimental results show that LPL and LM usually 
have a significant co-occurrence relationship, which means that LPL and LM are the focus 
of refactoring smells. Meanwhile, the appearance of LMC easily induces the appearance 
of LPL, and CCC also usually causes LPL to occur. Similarly, MNC largely makes LM 
happen, and CCC can easily cause the appearance of LC. All in all, the co-occurrence 
relationship between smells is complicated, but the smells that have a significant co-
occurrence relationship can provide guidance for refactoring route. 

Table 8.  Support of association rules in 9 projects 

Project 
Smell group 

Ansible Boto Django Ipython Matplotlib Nltk Numpy Scipy Tornado 

LPL-LM 0.139 0.102 0.072 0.094 0.241 0.161 0.184 0.172 0.227 
LPL-LC 0.009 0.133 0.05 0.048 0.197 0.045 0.055 0.034 0.054 
LPL-LMC 0.023 0.02 0.061 0.031 0.108 0.002 0.005 - 0.016 
LPL-CCC - - 0.014 0.004 0.045 0.081 0.02 0.001 0.011 
LPL-MNC - 0.033 0.012 0.004 0.032 0.026 0.006 0.007 - 
LM-LC 0.027 0.044 0.051 0.123 0.12 0.06 0.077 0.042 0.146 
LM-LMC - - 0.061 0.029 0.02 0.004 0.003 0.008 0.032 
LM-CCC 0.009 - 0.037 0.004 0.016 0.045 0.02 0.002 0.022 
LM-MNC 0.03 0.029 0.014 0.006 0.022 0.023 0.07 0.014 - 
LC-LMC - 0.013 0.023 0.011 - 0.002 0.003 - 0.065 
LC-CCC 0.011 - 0.014 0.004 0.032 0.049 - 0.001 0.022 
LC-MNC 0.009 0.012 0.003 0.004 0.008 0.019 0.018 0.007 - 
CCC-MNC - - 0.007 0.004 0.007 0.023 0.001 0.001 - 
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Table 9.  Confidence of association rules in 9 projects 

Project 
Smell group 

Ansible Boto Django Ipython Matplotlib Nltk Numpy Scipy Tornado 

LPL-LM 
LM-LPL 

0.207 
0.439 

0.192 
0.372 

0.172 
0.194 

0.253 
0.199 

0.331 
0.641 

0.255 
0.528 

0.610 
0.261 

0.346 
0.320 

0.519 
0.512 

LPL-LBCL 
LBCL-LPL 

- 
- 

- 
- 

0.008 
0.258 

0.006 
0.143 

- 
- 

0.018 
1.000 

- 
- 

0.005 
0.188 

0.074 
0.429 

LPL-LC 
LC-LPL 

0.014 
0.121 

0.251 
0.569 

0.120 
0.277 

0.130 
0.196 

0.271 
0.818 

0.071 
0.279 

0.183 
0.323 

0.069 
0.318 

0.123 
0.303 

LPL-LMC 
LMC-LPL 

0.034 
0.625 

0.037 
0.202 

0.147 
0.360 

0.084 
0.456 

0.148 
0.590 

0.003 
0.500 

0.017 
0.238 

- 
- 

0.037 
0.083 

LPL-LLF 
LLF-LPL 

- 
- 

- 
- 

0.013 
0.176 

0.029 
1.000 

0.009 
1.000 

0.018 
0.25 

- 
- 

0.005 
0.143 

- 
- 

LPL-CCC 
CCC-LPL 

- 
- 

- 
- 

0.034 
0.127 

0.010 
0.073 

0.063 
0.628 

0.128 
0.413 

0.068 
0.526 

0.002 
0.032 

0.025 
0.500 

LPL-MNC 
MNC-LPL 

- 
- 

0.061 
0.173 

0.030 
0.213 

0.010 
0.079 

0.044 
0.745 

0.042 
0.304 

0.020 
0.048 

0.015 
0.114 

- 
- 

LM-LC 
LC-LM 

0.086 
0.364 

0.162 
0.190 

0.139 
0.286 

0.260 
0.500 

0.318 
0.497 

0.196 
0.372 

0.109 
0.449 

0.078 
0.388 

0.329 
0.818 

LM-LMC 
LMC-LM 

- 
- 

- 
- 

0.166 
0.360 

0.061 
0.421 

0.054 
0.111 

0.012 
1.000 

0.004 
0.143 

0.016 
0.455 

0.073 
0.167 

LM-CCC 
CCC-LM 

0.029 
0.800 

- 
- 

0.101 
0.341 

0.008 
0.073 

0.043 
0.221 

0.147 
0.231 

0.029 
0.526 

0.003 
0.065 

0.049 
1.000 

LM-MNC 
MNC-LM 

0.094 
0.245 

0.107 
0.156 

0.037 
0.234 

0.013 
0.132 

0.058 
0.510 

0.074 
0.261 

0.099 
0.544 

0.026 
0.215 

0.159 
0.722 

LC-LMC 
LMC-LC 

- 
- 

0.056 
0.135 

0.130 
0.138 

0.044 
0.158 

- 
- 

0.012 
0.500 

0.018 
0.143 

- 
- 

0.364 
0.333 

LC-CCC 
CCC-LC 

0.152 
1.000 

- 
- 

0.076 
0.124 

0.015 
0.073 

0.133 
0.442 

0.302 
0.250 

- 
- 

0.008 
0.032 

0.121 
1.000 

LC-MNC 
MNC-LC 

0.121 
0.075 

0.051 
0.064 

0.016 
0.050 

0.015 
0.079 

0.035 
0.196 

0.116 
0.217 

0.108 
0.144 

0.070 
0.114 

- 
- 

CCC-MNC 
MNC-CCC 

- 
- 

- 
- 

0.060 
0.113 

0.073 
0.079 

0.093 
0.157 

0.115 
0.261 

0.026 
0.008 

0.032 
0.013 

- 
- 

 
RQ2: Which Python code smells have strongest correlation with each other? 
Table 10 shows the p value of the Spearman correlation coefficient between smells at 

0.01 level (the p value of 0.05 level is marked with ‘-’ in the table), which is used to eval- 

Table 10.  The p-value of Spearman's correlation coefficient in 9 projects at 0.01 level 

Project 
Smell group  

Ansible Boto  Django Ipython Matplotlib Nltk Numpy Scipy Tornado 

LPL-LM -0.231 -0.105  -0.290 -0.257 0.154 - -0.113 -0.204 - 
LPL-LC -0.315 - -0.129 -0.187 0.234 -0.279 - -0.107 - 
LPL-LMC - -0.158  - -0.115 -0.153 - - -0.127 -0.319 
LPL-CCC -0.142 - -0.180 -0.143 -0.057 -0.189 0.076(-) -0.144 - 
LPL-MNC -0.489 -0.328  -0.110 -0.134 - -0.138 -0.200 -0.189 -0.276 
LM-LC - -0.081  -0.051 -0.102 -0.206 0.154 -0.206 -0.083 0.423 
LM-LMC -0.131 -0.199  - - -0.257 0.102(-) -0.164 - -0.282 
LM-LLF - - -0.067 - 0.136 -0.142 -0.111 -0.135 - 
LM-MNC - -0.109  -0.053 -0.131 - - - -0.144 -0.285 
LC-CCC 0.376 - -0.055 -0.093 0.121 0.120 -0.091 - 0.319 
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uate the correlation degree of the code smell. The table shows the 10 most relevant groups 
of smells. The experimental results show that there is usually a negative correlation 
between these smells. Furthermore, {LPL-LM}, {LPL-CCC}, {LPL-MNC} and {LPL-LC} 
have a significant correlation generally. 

RQ3: Which co-occurred python code smells have strong associations relationship? 
Fig. 3 shows the relationship of strong correlation in the smell of Python code with co-

occurrence relationship. We are concerned about the strong correlation of several Python 
code smells. Based on the Lift in association rules, if Lift is greater than 1, which indicates 
that the smell is strongly associated. The result is visualized in Fig. 3, it can be found that 
LPL is easy to cause the appearance of other code smells, the strong correlation between 
smells includes: {LPL→LM}, {LPL→LMC}, {LPL→LBCL}, {LPL→CCC}, {LPL→
LLF} and {LPL→MNC}. 
 

LM

MNC

LC

LPL

LMC

LLF

CCC

LBCL

 

Fig. 3.  The causal relationship of strong correlation with smells 

RQ4: Can we generate a route for refactoring Python smells that is close to developers’ 
perception? 

The experimental data set is based on the open-source projects available on GitHub [3]. 
To assess the developers’ perception towards refactoring the smells concerned, we invite 
10 novice and experienced developers to perform smell refactoring individually. The 
developers have access to the offline versions of projects, and they acknowledge smells in 
related code components. However, online resource usage is prohibited. The developers’ 
experience in developing Python projects is shown in Table 11. Afterwards, we collect 
their mostly preferred refactoring route, which is presented in Table 12. Next, we used the 
Kendall’s Tau coefficient to calculate the inter-agreement among refactoring routes 
proposed by both novice and experienced developers. Result shows our refactoring route 
achieves a Kendall’s Tau coefficient of 0.814, which indicates the inter-agreement between 
developers is strong. The high inter-agreement reflects the high validity of the proposed 
refactoring route. 
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Table 11.  Developer Information 

Developer Population Python Development Experience 
Novice 7 1-3 Years 
Experienced 3 3-10 Years 

 

Table 12.  Refactoring routes suggested by developers 

      Smells 
Refactor route 

LPL LM LC CCC MNC 

Novice 1 2 4 3 5 
 1 3 2 5 4 
 1 2 3 4 5 
 1 3 4 2 5 
 2 1 3 5 4 
 1 2 3 4 5 
 1 2 3 5 4 
Experienced 1 2 3 4 5 
 1 3 2 4 5 
 1 2 3 4 5 

5.   Threats to validity 

Some threats may have influenced our study. Construct validity refers to the relationship 
between theory and observation. Internal validity is mainly considered possible errors in 
the experimental code. External validity is about the generalizability of results. Conclusion 
validity is related to treatment and outcome. 

Construct validity. This paper contains an experiment based on 9 active Python 
projects studied by prior research. Thus, the data set may not comply with other scenarios. 
Furthermore, metric thresholds of the experiment are carried out based on prior researches 
[21], which may differ from practical scenarios. 

Internal validity. The labels of our dataset are generated by a tool developed by us. 
The performance of the tool might be a threat to validity. However, the F-Measure of the 
tool reaches more than 97%, and we validated the results empirically. Thus, we believe the 
internal validity of the dataset is acceptable.  

External validity. The experimental results are generated based on the data set in this 
paper. Whether the results are applicable to other data sets needs to be studied further. The 
data set can be expanded in the future to ensure the results more generalizable. 

Conclusion validity. In addition, due to the varied background of different project 
versions, the distribution of smells in different projects has its own characteristics, so it is 
difficult to ensure the generalizability of experimental results. Moreover, our work includes 
manual validation, which may impose subjective views on refactoring based on different 
programming style and level of skill. To minimize this threat, we involved 9 developers 
with different extent of experience, all of them have experience of developing commercial 
Python project. 
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6.   Conclusion and future work 

In this paper, we propose a Python code smell refactoring strategy generation based on 
association rule and correlation. We studied 9 active open-source Python projects on 
GitHub, involving 55,206 files. Experimental results show that among the files affected by 
any smell, the frequency of smell co-occurrence reached 28.77%. In addition, we find that 
there exist 7 groups of code smell with the highest degree of co-occurrence, among which 
LPL and LM are the most co-occurrence smell group. Besides, there are 10 groups of smell 
with the highest degree of correlation, LPL is most likely to cause the existence of other 
smells. Moreover, we verify the rationality of the generated refactoring routes by 
comparing them with manually assigned refactoring routes by developers having different 
experience through Kendall’s Tau coefficient. Result shows our result derives high inter-
agreement with developers. Therefore, we recommend developers to refactor the smell in 
the order of {LPL→LLF}, {LPL→LBCL}, {LPL→LMC} or {LPL→LM→LC→CCC→
MNC}. 

For future work, we plan to (1) explore the relationship between other Python code 
smells, (2) investigate effective metric threshold for detecting correlated pairs of smells, 
(3) implementing a smell detector to achieve interactive correlated smell refactoring. 
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