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A B S T R A C T
The widespread adoption of open-source software (OSS) has introduced new security challenges to the
software supply chain. While existing studies confirm the basic capabilities of Software Composition
Analysis (SCA) tools, such as vulnerability detection and dependency resolution. They often focus
on single ecosystems or detection aspects. This limited scope overlooks real-world complexities,
including multi-language ecosystems, source and binary dependencies, and adversarial threats.
Without a comprehensive evaluation, SCA tools may perform well in controlled settings but struggle in
more complex scenarios. To address this gap, this study proposes a evaluation framework centered on
the core functionalities of SCA tools: dependency detection, vulnerability identification, and license
inspection. It covers three key dimensions including multi-language ecosystems compatibility, source
and binary construction forms, and attack defense. Using standardized datasets and quantitative
metrics, such as precision, recall, F1-score and standard deviation, we evaluate four representative
SCA tools, including both open-source and commercial options. Results reveal significant limitations
in binary dependencies, language coverage, and license consistency. SCA tools also face challenges in
balancing precision, coverage and robustness. The study highlights systemic shortcomings in current
SCA tools, revealing that many perform like limited-use toys under real-world conditions. It offers
data-driven recommendations to guide the evolution of these tools into practical, reliable solutions for
supply chain security governance.

1. Introduction
Open-source software (OSS) has become pivotal in soft-

ware development, supporting systems across virtually all
industries (Duan et al., 2017; Li et al., 2024; Ivanova et al.,
2024). The OSS supply chain (Wermke et al., 2023) is
composed of interdependent modules and libraries, forming
a complex network of dependencies through code reuse
(Ohm et al., 2020; Ma, 2018). While this complexity enables
rapid integration of functional components and accelerates
development, it also introduces significant security risks
(Imtiaz et al., 2021; Zhao et al., 2023a).

Components in the OSS supply chain come from diverse
sources and may pose risks like security vulnerabilities, li-
cense compliance issues and version compatibility problems
(Zahan, 2023; Tang et al., 2022; Wu et al., 2023; Jiang et al.,
2024; Dietrich et al., 2023). Once these risks propagate, they
can severely affect software systems reliant on the affected
components (Fourné et al., 2023).

For instance, in 2016, the npm package left-pad was
deleted by its developer (Wikipedia contributors, a). Given
its widespread use in the front-end ecosystem, its removal
caused disruptions in building and deploying numerous
projects, leading to website failures. Another example is the
Log4j2 remote code execution vulnerability in 2021 (Hies-
gen et al., 2024; Zhao et al., 2023b; Wu et al., 2023; Wetter
and Ringland, 2021). As one of the mainstream logging
libraries for Java software projects, its vulnerability had a
broad impact, causing significant losses to the information
security of governments and enterprises.
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Software Composition Analysis (SCA) tools analyze
open-source components used in software projects. They are
recommended as a key measure for managing open-source
risks by assessing the security, quality and licensing of these
components (Ladisa et al., 2023). An increasing number
of enterprises and development teams have recognized the
crucial role of SCA tools in safeguarding OSS supply chains
and have begun to actively use them (Zhan et al., 2020;
Zhao et al., 2023b; Prana et al., 2021; Dann et al., 2021;
Jiang et al., 2024; Imtiaz et al., 2021). These tools can
analyze software project dependencies, identify potential
vulnerabilities and license issues and support developers
in making timely corrections. However, it is important to
note that existing SCA tools vary significantly in terms
of accuracy, coverage and usability (Dietrich et al., 2023).
On the one hand, there are performance differences across
tools, particularly in core functionalities such as dependency
detection, vulnerability identification and license checking.
On the other hand, frequent false positives and negatives lead
to inaccurate security assessments, which in turn affect the
overall quality and reliability of the software.

Although some studies compare the performance of
SCA tools, most are limited to specific scenarios or single
datasets, lacking systematic validation of multi-language
compatibility, binary dependency detection and adversarial
threats. Sharma et al. (2024) compared several popular SCA
tools, but their evaluation mainly focused on vulnerability
detection, failing to cover key functions like dependency
management and license compliance. Similarly, Imtiaz et al.
(2021) revealed differences in vulnerability tracking and
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operational efficiency in their study of the large-scale Open-
MRS Web application, but did not evaluate multi-language
support or binary dependency detection.

These limitations are especially evident in multi-language
ecosystems. Zhao et al. (2023b) proposed a dependency
resolution evaluation model that systematically revealed
the SSM support deficiencies of SCA tools in the Maven
ecosystem, but their findings do not generalize well to other
technology stacks like Python and C/C++. Jiang et al.
(2024) demonstrated that code cloning and feature redun-
dancy can lead to significant misjudgments in third-party
library detection by traditional SCA tools in the C/C++
ecosystem, but such studies often focus on single-language
optimization, lacking validation across ecosystems. Without
a comprehensive evaluation, key performance dimensions
remain unexplored, which may lead to overestimating tool
effectiveness in real-world use.

Additionally, few studies have systematically evaluated
the impact of adversarial operations on SCA tools, a critical
aspect of modern software supply chain security. Dietrich
et al. (2023) revealed the interference of code shadowing
and cloning operations on tool accuracy, but did not propose
a quantitative adversarial testing framework. Zhan et al.
(2020) proposed an extensible evaluation framework for
binary obfuscation scenarios, but failed to analyze the sta-
bility differences across various build forms. Neglecting any
detection dimension, whether dependency, vulnerability, or
license, may lead to tools that perform well in specific tests
but fail in diverse and complex environments.

To address this gap, this study proposes a quantita-
tive evaluation model that integrates three core functions:
dependency detection, vulnerability identification and li-
cense recognition. It also covers three key scenarios: multi-
language ecosystem compatibility, source and binary con-
struction forms and adversarial threats (Wang et al., 2023).
The model employs a quantitative indicator system based
on recall, precision, F1-score and standard deviation to
assess performance. We evaluate four representative SCA
tools using standardized datasets designed to reflect real-
world complexity. Results reveal that, while these tools may
perform adequately in controlled settings, they often fail
to handle more demanding scenarios involving low-level
and emerging languages, binary dependencies, adversarial
threats, and license complexity. These findings highlight the
gap between current capabilities and practical needs—sug-
gesting that many SCA tools behave more like limited-use
toys than reliable solutions when facing real-world software
supply chain challenges. The study provides data-driven
guidance for developers, users, and researchers seeking to
improve tool robustness and applicability.

The main contributions of this paper are as follows:
1. This study proposes the first comprehensive evalua-

tion model that integrates three core functions: de-
pendency detection, vulnerability identification and

license recognition. It covers multi-language ecosys-
tems, source and binary construction forms and adver-
sarial threats, addressing the limitations of previous
research focused on single function or ecosystem.

2. We construct a standardized test suite encompass-
ing Java datasets, multi-language projects, diverse
construction methods, and adversarial scenarios. The
datasets are derived from academic literature and
leading open-source repositories over the past five
years. All datasets and ground-truth lists are open-
sourced to support reproducibility.1

3. Experiments on six datasets using the state-of-the-art
tools (e.g., RA, CleanSource, OpenSCA, and Snyk),
this study identifies weaknesses in both commercial
and open-source solutions and proposes optimiza-
tions.

The organization of this paper is as follows: Section
2 provides an overview of the background and technical
workflow of SCA tools. Section 3 outlines the methodology,
including the evaluation model, research questions, datasets,
tools, and evaluation metrics. Section 4 presents the perfor-
mance differences and limitations of the tools in dependency
detection, vulnerability identification, license recognition
and stability analysis. Section 5 discusses the findings from
the experimental results and offers recommendations for tool
developers, users and researchers. Section 6 addresses the
threats to the validity of the experiments. Section 7 compares
this study with existing research and reviews related work.
Finally, Section 8 summarizes the research conclusions and
implications for the industry.

2. Background
2.1. Terminology

Open Source Component: A software module or li-
brary released under an open-source license that permits
anyone to use, modify and distribute it. These components
are frequently integrated into projects during both develop-
ment and operations (Open Source Initiative).

Dependency: A reference from one software module or
component to another. In OSS, dependencies can be direct,
where one component immediately relies on another, or
indirect, where a component depends on another that, in
turn, relies on a third-party component.

Vulnerability: A flaw or weakness in software that
attackers can exploit. Such vulnerabilities in open-source
components may compromise the security of an entire sys-
tem, making their identification and management a key task
for SCA tools.

License Compliance: The adherence to the terms set
by OSS licenses, which define how the software may be
used, modified and distributed. SCA tools help ensure that

1The datasets and ground-truth lists are available at: https://github.
com/ErqiFang/Benchmarking-SCA-Tools.
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the open-source components in a project comply with these
licensing terms, thereby reducing legal risks (Microsoft).

Binary Dependency: A runtime dependency on binary
files, typically compiled code. Unlike source code depen-
dencies, analyzing binary dependencies requires handling
compiled files and libraries, which adds complexity to de-
pendency resolution (Pei et al., 2022).

Construction Form: The build structure of software
components, including source-level and binary-level depen-
dencies. Source-level dependencies are explicitly declared
in configuration files, while binary-level dependencies are
embedded in compiled files. Analyzing binary dependencies
is more complex, as it requires interpreting unstructured
artifacts without direct declarations.

Multi-Language Dependency: Dependencies involving
components written in multiple programming languages,
such as Java, Python, or C. These dependencies are typically
resolved through separate language-specific package man-
agers, rather than through cross-language function calls [43].

Multi-Language Ecosystem: A software project com-
posed of multiple programming languages and correspond-
ing build or dependency management tools, such as Maven,
npm, and pip. This evaluation dimension assesses whether
SCA tools can consistently and accurately identify depen-
dencies across diverse language ecosystems.

Adversarial Operations: Techniques that test the ro-
bustness and accuracy of SCA tools by simulating attacks.
These methods, including code obfuscation and dynamic
loading, aim to bypass detection mechanisms and reveal
potential weaknesses (Bacci et al., 2018; Wang et al., 2023).
2.2. Overview of SCA

SCA is a key technique for identifying, tracking, and
managing open-source components, third-party libraries
(TPLs), and dependencies in software projects (Imtiaz et al.,
2021; Dann et al., 2021). SCA tools support this process
by mapping software components and associated risks, such
as security vulnerabilities, license conflicts, and outdated or
redundant dependencies. They provide developers and se-
curity teams with data-driven insights for risk management
and compliance decisions (Sharma et al., 2024).

From technical process perspective, the SCA tools ex-
ecution pipeline consists of four stages (Ponta et al., 2018;
Decan et al., 2019; Microsoft; Wikipedia contributors, b), as
shown in Figure 1. In the data collection stage, the tool scans
the project’s source code repository, builds configuration
files such as pom.xml and package.json and binary files in JAR
or ELF format. In the dependency resolution stage, the tool
parses dependency declarations, builds tool configurations
and runtime environments to generate a complete depen-
dency tree (Decan et al., 2019). In the risk matching stage,
the parsed results are compared with vulnerability databases,
license repositories and version compatibility rules to iden-
tify high-risk components. Finally, in the report genera-
tion stage, the tool produces a Software Bill of Materials
(SBOM) (Sorocean et al., 2024; O’Donoghue et al., 2024), a

Figure 1: SCA Workflow

list of vulnerabilities and compliance recommendations and
formulates remediation strategies.

Existing studies primarily examine the functionality of
SCA tools from a single perspective, such as dependency
management (Zhao et al., 2023b; Ombredanne, 2020; Jiang
et al., 2023, 2024) or vulnerability detection (Kengo Oka,
2021; Imtiaz et al., 2021; Prana et al., 2021), without in-
tegrating multiple detection capabilities into a comprehen-
sive assessment. Moreover, evaluating license compliance
is crucial for a comprehensive analysis of SCA tools (Om-
bredanne, 2020; Duan et al., 2024).

The technical value of SCA tools is reflected in three
dimensions: dependency visualization and management,
which involves constructing multilevel dependency topol-
ogy maps to reveal direct and transitive dependencies, as-
sisting in optimizing dependency versions or removing re-
dundant components; security risk management, which
enables vulnerability reachability analysis and impact as-
sessment by correlating with vulnerability databases such
as NVD and Snyk Intel; and compliance assurance, which
involves parsing open-source licenses like Apache-2.0 and
GPL-3.0 and detecting potential constraints of contagious
licenses on commercial code.

Core functionalities, including dependency detection,
vulnerability identification, and license inspection, consti-
tute the foundation of modern SCA tools. However, their ef-
fectiveness depends not only on functional accuracy but also
on adaptability to challenging scenarios. Specifically, the
ability to support key dimensions, including multi-language
ecosystems, source and binary construction forms and ad-
versarial threats, is essential for ensuring robustness and
practical applicability in complex software supply chains.

Although SCA tools are essential for software supply
chain security, their effectiveness is limited by challenges
such as multi-language ecosystem, inadequate binary depen-
dency parsing and adversarial threat. Therefore, developing
an evaluation framework that addresses multiple scenarios
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and systematically assesses these tools’ performance is cru-
cial for advancing both technology and industry applica-
tions.

3. Study Methodology
3.1. Evaluation Model

The evaluation model provides a structured framework
for assessing the performance of SCA tools across diverse
scenarios. Building on prior criteria proposed in related
studies Zhan et al. (2020); Zhao et al. (2023b, 2021), the
model is structured around three core dimensions: evaluation
perspectives, evaluation scope, and evaluation metrics, as
illustrated in Figure 2. It defines three key scenarios that
SCA tools must address, and aligns them with the core
functionalities. These elements together support a compre-
hensive and systematic evaluation of tool capabilities.

Figure 2: Evaluation Model

• Evaluation Perspectives focus on three core functions of
SCA tools: Dependency Detection, Vulnerability Iden-
tification, and License Inspection. Dependency detec-
tion evaluates the tool’s capability to accurately construct
a SBOM, vulnerability identification assesses its effec-
tiveness in detecting security risks, and license inspection
examines its ability to manage legal risks associated with
open-source licenses.

• Evaluation Scope consists of three key dimensions:
Multi-Language Ecosystem, Source and Binary Con-
struction Form, and Adversarial Threat. These di-
mensions address practical challenges in software supply
chains, including multi-language development, diverse
build environments, and adversarial attack techniques.
The model integrates insights from development prac-
tices, technological diversity, and security threats to pro-
vide a comprehensive evaluation framework covering
both routine detection and complex adversarial scenarios.

• Evaluation Metrics include Recall, Precision, F1-Score,
and Standard Deviation to assess detection accuracy
and robustness. Recall measures a tool’s ability to iden-
tify all existing vulnerabilities and dependencies, while
precision indicates its effectiveness in minimizing false
positives. F1-score, as the harmonic mean of precision

and recall, provides a balanced metric that is particularly
useful under class imbalance and adversarial conditions.
Additionally, standard deviation quantifies the variability
of results under adversarial operations through repeated
experiments, indicating the tool’s consistency under vary-
ing conditions.

3.2. Workflow
Figure 3 illustrates the workflow of our study, struc-

tured around the proposed evaluation model. We compile
benchmark datasets from the past five years’ academic stud-
ies and official open-source repositories such as GitHub.
These datasets cover multi-language projects, source and
binary construction form, and adversarial threat scenarios.
To ensure broad applicability and reflect diverse technical
approaches, we include both commercial and open-source
SCA tools, selecting four representative ones for evaluation.

Figure 3: The Workflow of Our Study

Across multiple scenarios, we systematically test these
tools by extracting ground-truth data from the datasets and
computing relevant metrics. By comparing evaluation re-
sults across different scenarios, we identify limitations in de-
pendency detection, vulnerability identification, and license
inspection. Based on these observations, we summarize our
findings and provide recommendations for tool developers,
users, and researchers.
3.3. Research Questions

This study evaluates the overall effectiveness of SCA
tools, focusing on four key research questions (RQs) that
examine their performance limits, particularly in core func-
tions. The specific RQs are:
• RQ1: How effective are SCA tools in detecting depen-

dencies? This question evaluates dependency detection
from three perspectives: multi-language ecosystem, con-
struction form and adversarial threats.
– For multi-language ecosystem, DS1 on the Java Maven

database and DS4 on multi-language projects are used
to compare how effectively the tools resolve Java and
multi-language dependency chains.
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– For construction form, the differences in dependency
resolution between source and binary code are evalu-
ated by comparing the results of DS2 on binary files
with those of DS1 and DS3-5 on source dependencies.

– For adversarial threats, false negative rates are mea-
sured for dependency hijacking and code obfuscation
using DS1 and DS3 for attacks on Maven projects, and
using DS4 and DS5 for multi-language obfuscation.

• RQ2: Can SCA tools effectively identify vulnerabilities
in the supply chain attack scenarios? Due to incomplete
vulnerability data and limited details in some datasets
(Dietrich et al., 2023), this study uses DS3 to analyze at-
tacks on Maven projects, testing the tools’ ability to detect
known vulnerabilities across 11 adversarial scenarios.

• RQ3: How well do SCA tools recognize licenses in com-
plex licensing scenarios? Using DS6 based on the SPDX
license, we assess the tools’ ability to identify licenses
with naming discrepancies, such as different versions and
full names versus abbreviations like "GNU General Public
License v2.0" and "GPL-2.0". Since regex-based methods
struggle with these variations, a semi-automated process
was used to evaluate 663 licenses.

• RQ4: How stable are SCA tools in different detec-
tion scenarios? Dependency detection involves multi-
language ecosystems, source and binary construction
form and adversarial threat scenarios. Datasets DS1 to
DS5 include large, well-annotated samples. We calculate
the standard deviation (𝜎) of average recall, precision
and F1-score across the datasets to assess the consistency
of tool performance in complex software supply chain
environments.

3.4. Tool Selection
To ensure a comprehensive and balanced evaluation, we

selected four representative SCA tools—RA, CleanSource,
Snyk, and OpenSCA—based on their diversity in design
architecture, deployment models, ecosystem integration, and
adoption across both industry and academia. This selec-
tion covers commercial-grade, and open-source solutions,
reflecting varying levels of technical maturity, openness, and
usage scenarios.

RA is chosen as a commercial enterprise-grade solu-
tion with comprehensive detection capabilities and broad
language support. Snyk, in contrast, is a popular cloud-
based platform that provides a risk-based vulnerability scan-
ning service for open-source projects. Its wide adoption
and integration capabilities across development pipelines
make it representative of modern DevSecOps-focused SCA
tools[50].OpenSCA is a community-driven, actively main-
tained open-source project that is widely adopted in the
Chinese software security ecosystem. It offers transparency,
extensibility, and broad ecosystem coverage, making it well-
suited for research and academic evaluation.

3.4.1. Tool 1: Commercial Tool RA
RA, anonymized due to the request of its commercial

provider, is an enterprise-grade SCA tool that supports de-
pendency analysis, vulnerability detection and license com-
pliance. Its strength lies in its comprehensive detection meth-
ods, which identify software components through depen-
dency relationships, file structures, code snippets and binary
signatures. RA generates detailed component inventories at
the project and coordinate levels. Its broad language support
and comprehensive features make it suitable for large-scale
enterprise use.
3.4.2. Tool 2: Commercial Tool CleanSource

CleanSource, developed by SecTrend, is known for its
high detection accuracy and strong performance in adver-
sarial scenarios, making it suitable for complex enterprise-
level security and compliance needs. It has been deployed
by major tech companies such as Tencent (Global TMT), re-
flecting its effectiveness in real-world. Its technical strengths
include: (1) dependency tree visualization to map complex
relationships; (2) high-precision vulnerability matching and
risk assessment based on authoritative databases such as
CVE and CNVD; (3) adaptive recognition algorithms for
extracting component details, including versioning, licens-
ing and encryption methods; (4) the ability to scan binary
packages without requiring source code, enabling fast and
passive analysis; and (5) license compatibility checks for
open-source components.
3.4.3. Tool 3: Open-Source Tool OpenSCA

OpenSCA, the open-source version of Xmirror Secu-
rity’s Xcheck SCA, is widely used in small and medium-
sized projects. In this study, we use version v3. OpenSCA
supports dependency analysis and vulnerability detection
for major programming languages such as Java, Python,
PHP and Golang, integrating with the CVE database for
basic vulnerability scanning and component-level license
identification. However, it lacks file-level license detection,
has limited binary analysis capabilities and struggles with
obfuscation or encryption scenarios, making it more suitable
for less complex environments.
3.4.4. Tool 4: Commercial Tool Snyk

Snyk is a widely used commercial vulnerability scanning
platform that focuses on identifying and fixing security
issues across open-source dependencies, container images,
and infrastructure-as-code configurations. While the full
feature set is available via commercial licensing, limited
functionality is offered for open-source projects. We used
version v1.1297.1 in our experiments[51].

Snyk adopts a risk-based prioritization strategy, empha-
sizing high-impact vulnerabilities while suppressing less
relevant findings[49,50]. Integrated with platforms such as
GitHub, it performs automated dependency analysis, pro-
vides actionable remediation suggestions, and supports con-
tinuous monitoring. Its technical highlights include broad
language and ecosystem support, real-time vulnerability
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Table 1
Dataset Information and Tags

ID Dataset Description Source Tags

DS1 Classic Java Dependencies Zhao et al. (2023b) Dependency, Java
DS2 Binary Dependencies Zhan et al. (2020) Dependency, Binary
DS3 Maven Dependencies with Adversarial Modifications Ivanova et al. (2024) Dependency, Vulnerability,

Java, Adversarial
DS4 Multi-Language Dependencies SourceClear Dependency, Multi-Language
DS5 Multi-Language Dataset with Adversarial Modifications Wu et al. (2023) Dependency, Multi-Language,

Adversarial
DS6 License Dataset SPDX License

detection, and tight integration with modern development
pipelines.
3.5. Dataset Selection and Construction

The basic information of the datasets is summarized
in Table 1. The design logic, data sources and evaluation
objectives are detailed below. Although all datasets are
derived from benchmark-oriented scenarios, they are con-
structed based on patterns observed in real-world projects
and threat reports. Each dataset is designed to reflect specific
challenges faced by SCA tools in practice, including multi-
language ecosystem, binary dependency, and attack defense.
3.5.1. Dataset 1 (DS1): Java Dependency Dataset

This dataset is based on the benchmark framework pro-
posed by Zhao et al. (2023b), designed to model the com-
plexity of dependency management within the Java-Maven
ecosystem. It includes Maven modules and their dependency
topologies extracted from real Java projects, covering eight
Maven Dependency Features (MDF) and three Maven De-
pendency Settings (MDS). MDF includes dependency man-
agement, parent inheritance, exclusion, profiles, optional
dependencies, version ranges and variable-based versioning,
while MDS includes dependency type, classifier and scope.
The dataset consists of 256 MDF combinations and 22 MDS
instances, forming a standardized test set of 259 experi-
mental projects. Each project is annotated with ground-truth
dependency lists to ensure reliable benchmarking.
3.5.2. Dataset 2 (DS2): Binary Dependency Dataset

To evaluate SCA tools’ ability to detect OSS reuse in
binary form, this study uses a dataset from Zhan et al. (2020)
consisting of 35 complex executables generated from GCC,
Clang and MSVC. It includes 24 Linux ELF files (10 from
Clang) and 11 Windows PE files from MSVC, covering more
than one million assembly functions and 55 million lines
of C/C++ code. These binaries, derived from large-scale
applications such as physics engines and payment protocols,
reflect real-world production complexity.
3.5.3. Dataset 3 (DS3): Java Adversarial Dataset

To test the robustness of SCA tools against supply chain
attacks, the study uses an adversarial Maven POM dataset
from Ivanova et al. (2024). This dataset includes 29 high-
profile vulnerable dependencies sourced from the Maven

Central Repository and simulates attack scenarios by mod-
ifying manifest characteristics, bundling methods and de-
pendency configurations. It consists of 13 Maven projects,
including 11 adversarial cases and 2 baselines used for
comparative analysis.

To better reflect real-world threats, each scenario is
mapped to established software supply chain attack tax-
onomies [27,47]. Specifically, Scenarios 1–5 emulate meta-
data-level obfuscation techniques such as variable-based
versioning, profile-activated dependencies, and parent-child
inheritance. These mimic subtle configuration-based eva-
sions that hinder accurate dependency resolution. Scenarios
6–9 simulate build-stage attacks by modifying Uber-JAR
artifacts, including the use of shaded packages, stripped
metadata, or forged manifest files, resembling techniques
found in the SolarWinds[48] incident. Scenarios 10–11 re-
flect dependency confusion attacks, in which misleading
group IDs and tampered versions are introduced through
manual installation, representing typosquatting and hijack-
ing behaviors commonly reported in open ecosystems.
3.5.4. Dataset 4 (DS4): Multi-Language Dataset

To assess SCA tools’ compatibility and accuracy in
multi-language projects, the study adopts the “Evaluation
Framework for Dependency Analysis” (EFDA) dataset from
SourceClear (SourceClear). This dataset spans 10 major
programming languages, including Java, JavaScript, Python
and Golang and integrates heterogeneous build systems such
as Maven, npm, pip and Go Modules. It simulates real-world
development environments with multi-language dependency
chains and standardized ground-truth annotations.
3.5.5. Dataset 5 (DS5): Adversarial Multi-Language

Dependency Dataset
To test SCA tools’ ability to handle obfuscated de-

pendencies in multi-language scenarios, the study uses a
dataset from Wu et al. (2023), covering Python, Ruby, PHP,
Java, Rust, Golang and JavaScript. C/C++ projects were
excluded due to limited support in existing SBOM tools,
which could introduce evaluation bias. The dataset intro-
duces parser-level ambiguity by injecting non-standard syn-
tax into files such as Python’s requirements.txt, intentionally
exploiting inconsistencies among language-specific depen-
dency parsers to disrupt accurate resolution.
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Beyond dependency obfuscation, DS5 also models the
complexity of vulnerability propagation in real-world soft-
ware supply chains. The design captures practical issues
including how vulnerabilities are reached, the difficulty of
triggering them, and the downstream responses of dependent
projects. It reflects risks from deeply nested call chains,
vulnerabilities requiring multi-layered triggering logic, and
vulnerable functions invoked without sufficient validation
or control. Additionally, it includes cases of misconfigured
dependency management, such as version pinning failures
and hidden profiles. These characteristics mirror the patterns
of latent propagation risk and supply chain failure observed
in recent incident analyses, such as those reported in [27],
and help reveal the limitations of existing SCA tools in
identifying and mitigating such threats.
3.5.6. Dataset 6 (DS6): License Benchmark

For license detection evaluation, the study employs a
dataset based on the Software Package Data Exchange
(SPDX) standard, which includes 663 licenses with detailed
metadata and versioning information (SPDX). Provided in
RDFa, HTML, Text and JSON formats, the dataset enables
the evaluation of tools’ ability to recognize common licenses
and resolve versioning discrepancies.
3.6. Metric Setup

To evaluate the performance of SCA tools across en-
vironments, we use three key metrics: recall for detection
coverage, precision for result reliability and standard devi-
ation for consistency across scenarios.

In the experimental design, ground-truth serves as the
baseline, transforming detection tasks into binary classifica-
tion problems. Each dataset directory records four key val-
ues: matches, representing correct detections where predic-
tions align with the ground-truth; misses, indicating ground-
truth elements that the tool failed to detect; extras, referring
to incorrect predictions not present in the ground-truth; and
truths, denoting the total number of ground-truth elements.
These values form the basis for computing recall, precision
and standard deviation. The methodology includes the fol-
lowing steps:

1. Dynamic data definition: Positive labels, including
dependency names, vulnerability identifiers and li-
cense IDs, are defined by the dataset’s objectives.

2. Confusion matrix analysis: Performance is evaluated
using a confusion matrix with True Positives (TP),
False Positives (FP), True Negatives (TN) and False
Negatives (FN).

3. Cross-dataset comparison: Tools’ performance is
tested across different datasets, including adversarial
and regular scenarios, to evaluate generalization in
diverse environments.

Recall, precision, and F1-score quantify detection ef-
fectiveness, balancing coverage and false positive control:

• Recall is the proportion of true positives among all
actual positives, reflecting the tool’s ability to detect
dependencies or vulnerabilities. Higher recall indi-
cates fewer missed detections:

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

. (1)

• Precision measures the proportion of true positives
among all predicted positives, reflecting the accuracy
of detection results. Higher precision reduces false
positives, which is critical in adversarial scenarios:

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

. (2)

• F1-score is the harmonic mean of precision and recall,
providing a single metric that balances both aspects.
It is particularly useful when evaluating performance
under class imbalance or adversarial conditions:

F1 = 2 ⋅ Precision ⋅ Recall
Precision + Recall . (3)

To evaluate stability, the standard deviation of recall
and precision across datasets is calculated as:

𝜎 =

√

∑𝑛
𝑖=1(𝑥𝑖 − 𝑥)2

𝑛
, (4)

where 𝜎 is the standard deviation, 𝑥𝑖 is the value for each
dataset, 𝑥 is the average value, and 𝑛 is the number of
datasets. A smaller standard deviation indicates more con-
sistent performance across different scenarios, reflecting the
robustness of the tools.

4. Empirical Study
4.1. RQ1: How Effective Are SCA Tools in

Detecting Dependencies?
To evaluate the performance of SCA tools across diverse

dependency scenarios, this study uses datasets covering
programming languages, dependency types, and adversarial
conditions. The evaluation framework examines three key
dimensions: multi-language ecosystem compatibility, con-
struction form compatibility and robustness to adversarial
threats.

• Multi-Language Ecosystem Dimension focuses on
the ability of tools to handle multi-language ecosys-
tems, including Java, Python, and JavaScript, reflect-
ing the increasing use of multi-language frameworks
in modern development. This dimension examines
whether SCA tools can overcome single-language
limitations and accurately detect dependencies across
complex, multi-stack systems.
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Table 2
Average Dependency Detection Performance of Five Datasets

Tool Dataset Matches Misses Extras Truths Recall(%) Precision(%) F1(%)

RA

DS1 24.00 17.18 5.97 41.18 65.76 82.58 70.84
DS2 0.56 6.06 1.81 6.63 7.21 24.22 10.46
DS3 51.00 15.00 53.63 66.00 77.58 54.84 62.60
DS4 3.33 0.72 19.62 4.05 74.48 36.42 42.63
DS5 6.00 33.50 20.25 39.50 19.65 44.41 25.02

CleanSource

DS1 3.01 37.95 1.02 40.97 8.52 73.99 15.01
DS2 0.74 7.04 1.96 7.78 9.37 28.41 12.62
DS3 22.33 43.00 23.11 65.33 34.16 52.77 38.84
DS4 1.96 2.30 14.78 4.26 32.96 22.71 24.13
DS5 2.40 110.60 2.00 113.00 9.43 36.33 14.26

OpenSCA

DS1 28.13 12.83 0.08 40.97 74.86 99.84 84.68
DS2 / / / / / / /
DS3 44.50 20.80 10.30 65.80 68.02 70.40 68.42
DS4 3.86 0.82 20.14 4.68 85.25 48.12 49.82
DS5 15.00 83.43 1.86 98.43 33.38 66.69 40.96

Synk

DS1 29.88 11.09 0.13 40.97 81.21 99.80 88.34
DS2 / / / / / / /
DS3 39.30 26.00 2.90 65.30 60.00 56.96 58.43
DS4 2.86 0.45 22.77 3.83 86.84 23.14 32.52
DS5 15.17 81.50 4.17 96.67 32.54 49.62 37.95

Note: All metrics are reported as the average values computed across different files within the same dataset.

• Construction Form Dimension considers two types
of dependencies: source-level and binary-level. The
former refers to structured dependencies declared dur-
ing development, while the latter involves implicit
runtime dependencies of compiled artifacts. The for-
mer relies on syntax analysis and semantic reason-
ing, while the latter requires reverse engineering and
symbolic matching. Together, they form a complete
dependency map of the software supply chain.

• Adversarial Threat Dimension evaluates the tools’
robustness to supply chain attacks and multi-language
attacks. These scenarios simulate real-world tactics
such as code obfuscation and syntactic manipulation.

Experimental results indicate substantial performance
variations across datasets. Table 2 shows the average number
of ground-truths, matches, misses, extras and the average
recall, precision and F1-score for each tool across 5 depen-
dency datasets.
4.1.1. Multi-Language Ecosystem

To assess the generality and robustness of SCA tools
in multi-language environments, this study compares deep
single-language support using DS1, which follows Java
Maven standards, with broad multi-language coverage us-
ing DS4, which includes 10 languages such as Java, Python,
and C/C++. The number of ground-truth files in each dataset
and the number of files each tool successfully scanned are
shown in Table 3.

For DS1, Snyk and OpenSCA show the best performance
with high recall and precision, followed by RA with moder-
ate results. Snyk achieves the highest F1-score, demonstrat-
ing strong accuracy and low false positives in detecting Java
dependencies. OpenSCA also performs well, with a recall
of 74.86 % and precision of 99.84 %. RA achieves 65.76
% recall and 82.58 % precision but fails to detect certain
files, possibly due to complex Maven dependency features
or MDS projects exceeding its detection scope. CleanSource
scans all files but shows very low recall, averaging only three
correct matches per file compared to 41 ground-truth values.

DS4, which includes ten programming languages, re-
veals further differences among tools, as shown in Figure 4.
RA identifies dependencies in eight languages, missing only
Scala and C#. Snyk supports seven languages and is the
only tool capable of detecting dependencies in Scala and C#,
though it fails to handle C, Objective-C, and Ruby. None of
the tools cover all ten languages. OpenSCA performs best
in Python and Ruby, with consistently high recall and preci-
sion, and shows moderate results in Java, Golang, JavaScript,
and PHP. However, its performance drops sharply in C and
Objective-C, where both recall and precision are near zero.
RA achieves strong recall in Objective-C, Golang, Java, and
JavaScript, but its precision is highly variable, remaining
low in PHP and C. CleanSource demonstrates limited multi-
language capabilities, performing relatively well only in Ob-
jective-C and Python. It fails to detect dependencies in Java,
Ruby, or C, and its results in Golang, PHP, and JavaScript
are inconsistent. Snyk achieves the highest recall across most
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Table 3
Number of Files Effectively Scanned by Tools (Total per Dataset in Parentheses)

Tool DS1(258) DS2(32) DS3(10) DS4(54) DS5(12)

RA 131 32 8 40 4
CleanSource 258 23 9 27 5
OpenSCA 258 / 10 29 7
Snyk 258 / 10 22 6

Figure 4: Tool Performance on DS4 in Multi-Language Analysis

languages, reflecting strong multi-language coverage, yet its
lower precision results in only moderate F1-scores.

Finding 1: Existing SCA tools exhibit clear differ-
ences in multi-language ecosystem. While detection
techniques are mature for traditional environments like
Java, they remain weak for emerging languages like Go
and low-level languages like C and C++, highlight-
ing the challenge of achieving compatibility in multi-
language dependency analysis.

4.1.2. Construction Form
The diversity of software build patterns imposes distinct

technical adaptation requirements on component analysis
tools. From a full lifecycle perspective, dependency detec-
tion can be categorized into two types: source-level ex-
plicit dependencies and binary-level implicit dependencies.
Source-level detection is evaluated using DS1, DS3-5 to
assess the ability to parse structured dependency declara-
tions. Binary-level detection is tested with DS2 (binary files

compiled with gcc, clang and MSVC) to evaluate the ability
to trace dependencies without source code.

Figure 5: Performance of Tools Across DS1-5

Figure 5 illustrates the overall performance of the four
tools across the five datasets, where areas enclosed by the
same color block represent the same dataset. A comparison
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Table 4
Tools’ Dependency Detection in Attack Scenarios on DS3

Attack Scenarios RA CleanSource OpenSCA Snyk

0-baseline1 ✓ ✓ ✓ ✓

0-baseline2 / / / /
1-version-variable ✓ ✓ ✓ ✓

2-dependency-management ✓ ✓ ✓ ✓

3-profiles × ✓ ✓ ✓

4-parent-child-version-variable ✓ ◦ ✓ ✓

5-parent-child-groupid-variable × × ✓ ✓

6-uber-jar ✓ ✓ ✓ ◦
7-shaded-uber-jar ✓ ✓ ✓ ◦
8-bare-uber-jar ✓ ◦ ◦ ◦
9-uber-jar-modified-metadata ✓ ✓ ◦ ◦
10-manual-install-modified-groupid / / / /
11-manual-install-wrong-version / / / /

1 Baseline 1 is utilized for comparison with manifest-related and bundling attacks.
2 Baseline 2 serves as a reference for comparison with dependency modification attacks.
Symbols: ✓= correct identification; × = identification failure; ◦ = report generated, all matches fail; / = no ground-truth data.

between the red and other colored regions reveals significant
differences in handling source-level and binary-level depen-
dencies. In source-level scenarios, the tools achieve an aver-
age recall of 48.7%, and an average precision of 57.4% (with
OpenSCA reaching 99.84%), indicating strong capability in
managing explicit dependencies. However, in binary-level
scenarios, the average recall drops sharply to 8.7% (RA:
7.21%, CleanSource: 9.37%) with precision falling below
30%. Notably, OpenSCA and Snyk lack binary-level detec-
tion capabilities entirely.

Finding 2: SCA tools show significantly weaker per-
formance on binary datasets compared to source code
scenarios, highlighting limitations in handling source
and binary construction forms. Some tools are unable
to detect any binary dependencies at all, exposing a
critical blind spot. This gap in binary-level construc-
tion detection limits comprehensive security across the
software supply chain lifecycle.

4.1.3. Adversarial Threat
This study evaluates the robustness of SCA tools in

threat detection using two adversarial datasets: basic supply
chain attacks (DS3) and complex multi-language adver-
sarial scenarios (DS5). DS3 simulates traditional depen-
dency hijacking in Maven projects, while DS5 tests multi-
language dependency confusion. These datasets assess the
tools’ defense capabilities and ecosystem adaptability.

Table 4 and Figure 6 present the tools’ performance
boundaries, including recall and precision, under different
attack scenarios in DS3. The "✓" indicates that the tools
can effectively identify and generate prediction reports. In
the basic attack scenario, OpenSCA demonstrates strong
defense, with a recall of 68.02% and precision of 70.40%,
though it fails under complex build attacks involving bare
uber-jar files. In contrast, RA, CleanSource, and Snyk ex-
hibit varying degrees of weakness. RA achieves the highest

Figure 6: Tools’ Dependency Detection in DS3 Attack Scenar-
ios

recall at 77.58% but suffers a precision drop to 33.56%
under parent-child variable substitution, indicating difficulty
in resolving modified dependency structures. CleanSource
shows severe instability, with recall fluctuating from 9.3%
to 93.1% and a low F1 score of 38.84%, reflecting poor
robustness against structural attacks. Snyk maintains mod-
erate yet stable performance, with an F1 score of 58.43%.
It handles basic and multi-module cases adequately, but
fails to match any predictions under uber-jar and metadata
manipulation scenarios, revealing clear limitations in build-
stage obfuscation defense.

The complex multi-language adversarial scenario on
DS5 (as shown in Figure 7) further amplified performance
gaps among tools. All tools struggled with adversarial op-
erations involving Ruby and Rust. OpenSCA maintained
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Figure 7: Tool Performance on DS5 in Multi-Language Analysis

high accuracy in certain PHP, Golang and Java scenarios
but showed a sharp decline in Python and JavaScript com-
pared to DS3. RA’s overall performance was weaker, with
reliable detection only in Golang, Java and Python, while
performance in PHP, Ruby and JavaScript deteriorated sig-
nificantly. CleanSource performed moderately, successfully
identifying some obfuscated dependencies in Golang, Java,
JavaScript and Python, but with limited consistency. Its
detection capability in Python, PHP and JavaScript dropped
significantly under complex adversarial conditions.Snyk ex-
hibited strong detection in Golang, achieving high F1 scores,
but performed poorly in JavaScript where key metrics ap-
proached zero.

Finding 3: Existing SCA tools exhibit limited re-
silience and poor adaptability to adversarial threats.
They struggle to handle bundling modification attacks
and multi-language obfuscation, revealing critical gaps
in attack surface coverage and inconsistencies in se-
mantic analysis.

4.2. RQ2: Can SCA Tools Effectively Identify
Vulnerabilities in Supply Chain Attack
Scenarios?

In software security, the vulnerability identification ca-
pability of SCA tools is essential. This study evaluates the
vulnerability and dependency identification performance of
RA, CleanSource, OpenSCA and Snyk using DS3. The
assessment covers both simple baseline scenarios, such
as standard dependency injection and complex adversar-
ial scenarios, such as Uber-JAR metadata tampering. ??
presents the tools’ vulnerability identification performance,

including recall and precision for both vulnerability and vul-
nerable dependency identification. ?? illustrates the tools’
performance limits across different attack scenarios.

RA demonstrates solid overall performance, with a vul-
nerability recall of 62.12%, indicating good coverage in
identifying vulnerabilities. It handles most adversarial sce-
narios in DS3, failing only in a few cases such as profiles and
parent-child group ID variation. For vulnerable dependency
identification, RA performs well, achieving an F1 score of
66.15%, though its low precision of 21.59%.

CleanSource favors precision over recall, achieving the
highest vulnerability precision at 43.74% and an F1 score
of 38.09%. However, its scenario coverage is limited, per-
forming effectively in only five scenarios (including one
baseline), and failing completely in complex cases involv-
ing version variable parsing and dependency management
configuration tampering.

OpenSCA shows balanced but limited performance. Its
vulnerability recall and precision remain low, around 24%,
and it fails in specific bundling attacks such as bare Uber-
JAR and metadata modification, where it generates reports
without correct matches. Nevertheless, it handles a wide
range of scenarios stably, detecting attacks in 11 out of 13
DS3 cases.

Snyk shows the weakest performance in vulnerability
identification, with a recall of 23.47%, precision of 16.16%,
and an F1 score of just 18.45%. However, it performs best in
detecting vulnerable dependencies, achieving the highest F1
score of 74.42%. While Snyk identifies early-stage attacks
such as baseline and version variation effectively, it fails
in build-stage and manual installation scenarios. These re-
sults indicate strong dependency-level detection but limited
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Table 5
Vulnerability and Affected Dependency Detection Performance (Average Across Datasets)

Tool Vul.Rec (%) Vul.Prec (%) Vul.F1 (%) Vul.Dep.Rec (%) Vul.Dep.Prec (%) Vul.Dep.F1 (%)

RA 62.12 21.59 30.94 88.40 53.92 66.15
OpenSCA 24.25 24.46 24.04 62.86 31.27 41.26
CleanSource 34.59 43.74 38.09 56.90 68.10 61.10
Snyk 23.47 16.16 18.45 87.07 65.55 74.42

Table 6
Vulnerability Identification of SCA Tools in DS3 Attack Scenarios

Attack Scenarios RA CleanSource OpenSCA Snyk

0-baseline1 ✓ × ✓ ✓

0-baseline2 ✓ ✓ ✓ ✓

1-version-variable ✓ × ✓ ✓

2-dependency-management ✓ × ✓ ✓

3-profiles × × ✓ ✓

4-parent-child-version-variable ✓ × ✓ ✓

5-parent-child-groupid-variable × × ✓ ✓

6-uber-jar ✓ ✓ ✓ ×
7-shaded-uber-jar ✓ ✓ ✓ ×
8-bare-uber-jar ✓ × ◦ ×
9-uber-jar-modified-metadata ✓ ◦ ◦ ×
10-manual-install-modified-groupid ✓ ✓ ✓ ×
11-manual-install-wrong-version ✓ ✓ ✓ ◦

1 Baseline 1 is utilized for comparison with manifest-related and bundling attacks.
2 Baseline 2 serves as a reference for comparison with dependency modification attacks.
Symbols: ✓= correct identification; × = identification failure; ◦ = report generated, all matches fail; / = no ground-truth data.

capability in mapping vulnerabilities to specific identifiers,
reducing its adaptability to complex attack patterns.

Finding 4: The vulnerability detection performance
of SCA tools is highly variable, often showing high
false positive rates and poor adaptability to com-
plex scenarios. This reflects a trade-off in traditional
detection methods between precision and coverage, as
well as limitations in handling attacks like bundling
modifications and manifest features changes.

By mapping the vulnerability reports produced by
each tool to the NVD database and extracting the as-
sociated CWE entries, we found that the top five most
frequently detected CWE types are highly consistent
across tools, including CWE-502, CWE-400, CWE-
770, CWE-787, and CWE-20.

4.3. RQ3: How Well Do SCA Tools Recognize
Licenses in Complex Licensing Scenarios?

The diversity of open-source licenses and the complex-
ity of license expressions, including the mixed use of full
names and abbreviations, present key challenges for SCA
tools in license recognizing. This study evaluates the license
identification and matching performance of SCA tools using
DS6, the SPDX standardized license list, which includes
663 licenses. The analysis focuses on the semantic parsing
accuracy (precision) and the coverage (recall). Since other

datasets lack standardized ground-truth, SPDX serves as the
only quantifiable benchmark.

Technical limitations cause OpenSCA and Snyk to fail
entirely, generating no valid predictions. This indicates that
its dependency-based matching mechanism is incompati-
ble with SPDX’s file-level detection. The license recog-
nition results for RA and CleanSource are presented in
Table 7, where "Average Per-Sample True Value" refers to
the predicted value for a single reported license and "Global
Dataset" pertains to the entire dataset. Figure 8 illustrates
the ratio of successful to failed matches reported by RA and
CleanSource.

RA exhibited mixed performance, combining high per-
sample accuracy with low global coverage. At the individual
license level, it achieved over 65% precision and recall,
averaging 0.75 matches per license. However, at the global
level, it matched only 179 licenses (27% recall) with a 73%
false negative rate. RA generated 202 predictions, exceeding
the number of valid matches, indicating systematic blind
spots for certain licenses.

In contrast, CleanSource showed more pronounced lim-
itations. Its global recall was below 7%, leaving 93.21% of
licenses unidentified. Even in successful cases, its precision
reached 76.67%, averaging only 0.47 matches per license.
The low recall and high rate of missed detections suggest
that CleanSource’s algorithm struggles to handle complex
license patterns.
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Table 7
License Recognition Performance of Tools

Average Per-Sample True Value Global Dataset

Matches Misses Extras Recall Precision F1 Matches Misses Extras Recall Precision F1

RA 0.75 0.26 0.61 65.04% 64.83% 64.90% 179.00 484.00 202.00 27.00% 46.98% 34.29%
CleanSource 0.47 0.53 0.56 45.56% 45.56% 45.56% 23.00 640.00 7.00 3.47% 76.67% 6.64%

(a) RA (b) CleanSource

Figure 8: Performance of Tools in License Recognition

Finding 5: SCA tools have limitations in license
recognition. These gaps underscore the systemic limi-
tations of traditional methods in handling expression
diversity (e.g., "GPL-2.0-only" vs. "GNU GPL v2") and
version granularity (e.g., "Apache-2.0" vs. "Apache-1.1").

4.4. RQ4: How Stable Are SCA Tools in Different
Detection Scenarios?

The stability of SCA tools directly impacts their reli-
ability and deployment feasibility across various environ-
ments. Dependency detection involves multiple language,
source and binary construction form and adversarial threat,
increasing its complexity. Using DS1–5, this study evaluates
stability based on the consistency of dependency detection
results. The standard deviation (𝜎) of the average recall,
precision and F1 across datasets is calculated for each tool
as a measure of stability. The experimental results are shown
in ??.

RA indicates unstable performance across datasets, with
standard deviations of 29.51% in recall, 19.77% in precision,
and 22.53% in F1 score. OpenSCA is more consistent but
still fluctuates, with deviations of 19.47% in recall, 18.53%
in precision, and 16.90% in F1. CleanSource demonstrates
the most stable performance, particularly in F1 score with
a deviation of only 9.79%. Snyk shows high inconsistency
overall, with precision varying by 27.53%, and substantial

Table 8
Standard Deviation of Dependency Recall, Precision, and F1
Across Datasets

Tool Recall (%) Precision (%) F1 (%)

RA 29.51 19.77 22.53
OpenSCA 19.47 18.53 16.90
CleanSource 11.99 18.57 9.79
Snyk 21.32 27.53 21.89

fluctuations in recall and F1 score, at 21.32% and 21.89%
respectively.

Finding 6: SCA tools show poor consistency across
datasets, especially in recall and F1. Tools with broader
coverage tend to be less stable, exposing a trade-off
between coverage and consistency.

5. Discussion and Implication
5.1. Discussion

Empirical findings reveal significant capability gaps
and adaptation challenges in existing SCA tools. While
some tools perform well in controlled, source-level scenar-
ios, they struggle in multi-language, binary, and adversarial
contexts. Performance declines sharply in binary scenarios,

13



Congyan Shu et al.

as evidenced by analysis on DS2, due to algorithmic lim-
itations in addressing compilation optimizations and de-
pendency obfuscation. Moreover, SCA tools exhibit weak
resistance to advanced threats, such as post-compilation at-
tacks and multi-language obfuscation techniques, as shown
through comparative analysis on DS1 and DS3, DS4 and
DS5.

One key contribution of this study lies in its cross-
dimensional evaluation framework, which integrates three
core functionalities (dependency, vulnerability, license) with
three real-world scenarios (multi-language ecosystems, source
and binary construction, and adversarial threats). Previous
research has typically focused on a single dimension; our
integrated approach exposes compound failure points—such
as the interplay between binary-level analysis and license
recognition—rarely visible in isolated evaluations.

Another novel aspect is our use of stability metrics,
including standard deviation across multiple runs. This en-
ables quantification of detection consistency, revealing that
broader detection coverage often comes at the cost of in-
creased result variance. Such trade-offs, especially under
adversarial conditions, underscore the fragility of current
SCA solutions. SCA tools struggle to detect metadata poi-
soning and obfuscated dependency relationships, consistent
with past security failures. Our attack modeling in DS3
and DS5 reflects realistic supply chain threats based on
established scenarios. DS3 focuses on build-stage and meta-
data-layer vulnerabilities, including configuration obfusca-
tion and tampered binary artifacts. It draws on real-world
cases such as the SolarWinds incident[48], where com-
promised build outputs evaded standard scanning, and on
typosquatting and metadata manipulation attacks reported in
earlier studies[47]. DS5 models downstream risks caused by
structural propagation of vulnerabilities and misconfigured
dependencies, rather than direct attacks. Aligned with prior
software supply chain attack taxonomies[27], these datasets
go beyond synthetic constructs to replicate the ambiguity
and complexity encountered in actual ecosystems—span-
ning metadata, build artifacts, and runtime behaviors. The
reduced precision and recall in these scenarios highlight
the difficulty of detecting complex threats across metadata,
artifacts, and runtime layers.

Vulnerability detection remains inconsistent, with high
false positives and poor handling of bundling changes and
manifest modifications. Similarly, license detection strug-
gles with expression differences and version details. The
challenge of balancing detection breadth and stability re-
mains unresolved. Broader coverage often leads to greater
variation in recall and precision, making it difficult to
achieve both sensitivity and consistency.

These results suggest that current SCA tools may func-
tion as effective tools in well-structured, single-language,
source-level environments, where dependency information
is explicit and standardized. However, in more realistic
and challenging scenarios involving binary artifacts, multi-
language architectures, and adversarial threats, they fail to

maintain accuracy, coverage, and stability, acting more like
toys that lack reliable and comprehensive results.

Overall, existing SCA tools have yet to balance pre-
cision, coverage and robustness. These issues show sys-
temic weaknesses in managing heterogeneous construc-
tion forms, multiple adversarial threats and deep multi-
language semantic analysis, limiting their ability to address
complex software supply chain risks effectively.
5.2. Implication
5.2.1. For Evaluated SCA Tool Developers

Our evaluation reveals distinct capability gaps in each
SCA tool when applied to multi-language, binary, and ad-
versarial scenarios. Addressing these limitations is essential
to enhance their reliability in practical software supply chain
environments.

OpenSCA lacks binary analysis capabilities and strug-
gles with license recognition. As shown in Sections 3.4 and
4.1, it fails to detect any dependencies in the binary dataset
DS2, and performs poorly on DS6, where embedded or non-
standard license texts are missed. To improve, OpenSCA
should integrate binary fingerprinting for compiled artifact
analysis and adopt SPDX-based license parsing with seman-
tic normalization.

Snyk shows limited support for binary and license-
level detection, and performs inconsistently under adversar-
ial conditions. It relies solely on manifest-based scanning,
leading to zero detection in DS2. In DS3 and DS5, recall and
precision drop sharply (Section 4.1), and standard deviation
increases across metrics (Section 4.4). Snyk should extend
its scope to binary and container artifacts, strengthen re-
silience to obfuscation, and stabilize results through iterative
validation mechanisms.

CleanSource achieves high precision but consistently
lower recall, particularly in multi-language and adversarial
datasets (Table 2). Its conservative detection strategy avoids
false positives but overlooks valid dependencies. Adopting
fuzzy matching and feature-tolerant analysis could help cap-
ture implicit or partially modified components.

RA provides accurate results but suffers from limited
scanning coverage. In DS1, it scans significantly fewer files
than other tools (Table 3), due to strict assumptions about
project structure (Section 4.2). To improve coverage, RA
should relax layout constraints and implement dynamic
project boundary inference for broader applicability.
5.2.2. General Recommendations for SCA Tool

Developers
Beyond tool-specific issues, our findings highlight com-

mon limitations in existing SCA tools, especially in han-
dling non-standard scenarios such as binary dependency
detection. Compilation optimizations often obscure depen-
dencies, leading to reduced recall and precision. Addressing
these challenges and expanding support for diverse compil-
ers and platforms like GCC, Clang, and MSVC are essential
for improving dependency tracing in source-less environ-
ments.
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Improving multi-language support is equally impor-
tant. As multi-language projects are becoming more com-
mon, SCA tools need better handling of diverse program-
ming languages. Flexible dependency resolution algorithms
that support heterogeneous build systems like Maven, npm
and pip would enhance the resolution of multi-language
dependency chains, aligning with contemporary hybrid soft-
ware development.

Optimizing license detection is another critical need.
Existing SCA tools struggle to identify complex license
patterns and distinguish between different license versions.
Developers should refine license detection algorithms to
improve accuracy and coverage.

Promoting standardization among SCA tools is crucial.
Inconsistent license names and versions in SCA reports
hinder cross-tool comparison. Establishing unified reporting
standards would improve interoperability and consistency
across different tools.

Finally, deeper integration of SCA tools into the devel-
opment lifecycle should be prioritized. Developing plugins
for real-time scanning and automated triggering mechanisms
could enable immediate detection and risk alerts, strength-
ening supply chain security.
5.2.3. For SCA Tool Users

Selecting the appropriate SCA tool depends on specific
project requirements since tools differ in functionality,
language support and detection accuracy. For Java-based
projects requiring high detection accuracy, OpenSCA is
likely the best option. For multi-language projects, RA’s
broad coverage makes it a viable choice despite its varying
performance across languages. For enterprise-level projects
involving binary files, RA and CleanSource may offer a more
effective solution. Additionally, combining multiple tools
and manual review can further enhance project compliance
and improve overall detection accuracy.
5.2.4. For Researchers

Develop a more comprehensive evaluation framework
for SCA tools, as current research mainly focuses on specific
scenarios or single datasets. A broader framework should
assess tool performance across diverse programming lan-
guages and build environments. Moreover, exploring ad-
vanced detection techniques is essential, as traditional SCA
methods may face challenges with future threats. Using AI
or machine learning can improve dependency detection and
help identify complex attacks by uncovering deeper patterns.
Monitoring supply chain attack trends and developing tar-
geted defense strategies are also crucial.

6. Threats to Validity
6.1. Internal Validity

Subjectivity in data processing may introduce bias.
Constructing ground-truth sets and prediction reports typ-
ically requires manual intervention. For instance, when
ground-truth information is distributed across README
files and documentation, data must be collected using a web

crawler and manually organized into standardized reports.
Similarly, processing tool outputs such as JSON or CSV,
requires manually extracting key fields and defining uniform
rules for dependency name normalization and versioning
removal. Despite employing a semi-automated process to
handle 663 licenses, which consumed approximately 50
hours, potential errors remain.

Configuration differences across tools may also affect
the replicability of results. Since configuration parameters
affect detection performance, this study uses default settings
to reduce variability.
6.2. External Validity

Selection bias in dataset choice may affect the gener-
alizability of the results. While this study uses six distinct
datasets covering Java projects, binary files, multi-language
projects and adversarial threats, these datasets may not fully
capture the diversity of real-world software projects.

Temporal factors may also affect the validity of the find-
ings. Since SCA tools’ vulnerability databases and detection
algorithms are continuously updated, the results reflect the
tools’ performance at a specific point in time. Subsequent
improvements could render some conclusions outdated.

Finally, excluding failed scans during data collection
may weaken result validity. Projects that failed to be suc-
cessfully scanned were excluded from the study, which may
introduce inconsistency in tool evaluation across the same
dataset and weaken the overall reliability of the findings.
6.3. Construct Validity

Limitations in evaluation metrics may restrict a com-
prehensive assessment of tool performance. This study pri-
marily uses recall, precision, and standard deviation to eval-
uate performance. While these metrics capture core aspects,
they may overlook factors such as usability, runtime effi-
ciency and integration with development workflows.

Furthermore, limited tool representation may reduce
the generalizability of the findings. The study evaluates only
RA, CleanSource and OpenSCA, which are representative
within the commercial and open-source domains. However,
excluding widely used tools like Snyk and Black Duck may
limit the results’ applicability to other SCA tools.
6.4. Conclusion Validity

The limitations of the experimental design may restrict
the applicability of the conclusions. Although the study tests
the robustness of SCA tools against supply chain attacks us-
ing adversarial datasets, these operations may not capture the
full complexity of real-world attacks, limiting the practical
relevance of the findings. Moreover, while the study includes
multi-language datasets, limited support for languages like
C/C++ and Objective-C may affect the accuracy of tool
performance evaluation in multi-language environments.
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7. Related Work
7.1. Research on Existing SCA Tools

In research on SCA tools, numerous studies have ex-
plored their strengths and weaknesses. These tools differ in
functional features, operational mechanisms and detection
accuracy. For instance, some tools scan code repositories to
identify vulnerabilities. OWASP Dependency Check lever-
ages multiple third-party data sources to detect publicly dis-
closed vulnerabilities in project dependencies (Imtiaz et al.,
2021). In contrast, Snyk Open Source uses its proprietary
Snyk Intel vulnerability database to scan project manifest
files, build a dependency tree and detect vulnerabilities
(Sharma et al., 2024). However, existing SCA tools still
struggle with complex software environments, leading to
issues such as inaccurate dependency resolution and false
positives in vulnerability detection (Zhao et al., 2023b; Wu
et al., 2023; Imtiaz et al., 2021; Jiang et al., 2024). Dietrich
et al. (2023) showed that shading and cloning operations
significantly reduce the accuracy of SCA tools, highlighting
their weakness in handling dependency modifications.

Despite extensive research on SCA tools,a comprehen-
sive evaluation that spans functionality and environmental
complexity remains absent. Prior studies often focus solely
on vulnerability detection outcomes (Prana et al., 2021),
neglecting variations in dependency resolution and com-
plex scenarios, or are limited to specific ecosystems (Zhan
et al., 2020; Jiang et al., 2024; Imtiaz et al., 2021) and
programming languages (Zhao et al., 2023b; Dann et al.,
2021), which reduces their applicability in broader contexts.
Our study addresses this gap by jointly evaluating detection
capabilities under realistic, cross-dimensional conditions.

Zhan et al. (2020) investigated binary scanning ap-
proaches and identified common steps in feature-based
detection, covering aspects such as version inference and
obfuscation recovery. However, their comparison was lim-
ited to tool-level scanning strategies and did not analyze
how different construction forms within the same tool impact
detection outcomes. Our work extends this by comparing the
stability and effectiveness of the same SCA tool under both
source-based and binary-based modes, revealing internal
inconsistencies that affect accuracy.

Prana et al. (2021) conducted a comparative analysis
of popular SCA tools based on vulnerability detection and
CI integration. They found that even tools using the same
database, such as Snyk and Red Hat, report different vulner-
abilities, indicating variations in algorithms or implemen-
tation. We extend this work by examining how tool perfor-
mance changes under adversarial conditions like metadata
poisoning and dependency obfuscation, showing that most
tools lack robustness in such scenarios.

Unlike previous studies that rely heavily on average pre-
cision or recall, we introduce detection stability as a critical
metric, using standard deviation across datasets to assess
the consistency of tool performance. This reveals that tools
with broader coverage often suffer from high performance
variance, a trade-off not captured by existing work.

Imtiaz et al. (2021) benchmarked nine SCA tools on
OpenMRS, focusing on runtime, vulnerability count, and de-
pendency tracking. While valuable, their study centered on
a single application and lacked coverage of multi-language
support and adversarial behavior. In contrast, our experi-
ments span six datasets, including both curated real-world
projects and adversarially designed cases (e.g., DS3, DS5),
which reflect common patterns in real attacks such as Solar-
Winds and typosquatting[47,48].

Zhao et al. (2023a) proposed a model to evaluate depen-
dency resolution in the Maven ecosystem (SSM), reporting
average F1 scores and accuracy limitations in the build and
pre-build phases. While their results provide insight into
Maven-specific tool performance, our study expands this to
multi-language ecosystems and demonstrates that tools often
perform inconsistently when faced with language-specific
build systems and binary-only releases.

Overall, our contribution lies not only in aggregating
detection results but in uncovering interaction effects be-
tween detection functions and real-world scenarios—such
as the observed degradation of license recognition in binary
mode, or the instability of vulnerability detection under
adversarial construction. This integrated view enables us to
distinguish between tools that merely function under ideal
settings and those capable of handling complex, evolving
software supply chains.
7.2. Research on Open-Source Dependencies,

Vulnerabilities, and License Detection
In research on open-source dependencies, vulnerabilities

and license detection, scholars have proposed various meth-
ods and tools to address the security and compliance risks
associated with OSS. Vulnerabilities in open-source compo-
nents often stem from TPLs or frameworks, typically due to
coding errors, misconfigurations, or outdated dependencies.
For example, when the Apache Log4j2 vulnerability was dis-
closed, it had a significant impact, affecting over 35,000 Java
packages and more than 8% of the Maven ecosystem (Zhao
et al., 2023b; Wu et al., 2023; Wetter and Ringland, 2021).
The scope of these vulnerabilities is broad, particularly when
popular libraries are affected, as all projects depending on
those libraries are at risk (Zhao et al., 2023a).

To detect and mitigate these risks, researchers have
proposed various strategies and tools. Tang et al. (2022)
introduced LibDB, a framework for detecting TPLs in C++
binaries. LibDB includes three main modules: the feature
extraction module, which identifies basic and function vec-
tor features from binary files and constructs function call
graphs; the fast detection module, which searches for candi-
date libraries in a local database using feature channels; and
the FCG filtering module, which compares the function call
graphs of candidate libraries and the detection target using
a graph embedding network to filter out incorrectly reported
libraries (Tang et al., 2022). Similarly, Duan et al. (2017)
proposed OSSPolice, a tool for detecting dependencies in
Java and C/C++ binaries. OSSPolice generates software
feature signatures using syntactic features like string literals
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and functions and achieves high scalability and accuracy
through a hierarchical indexing scheme. However, its per-
formance is limited by control flow obfuscation Duan et al.
(2017). Additionally, Li et al. (2024) presented a method
for analyzing TPLs based on pre-built dependency graphs.
By employing a Common Platform Enumeration (CPE)
transformation algorithm, this method constructs localized
dependency graphs, enabling teams to perform TPL analysis
and vulnerability scanning within their local environments.
Experimental results showed that this approach is efficient
while maintaining high precision. Zhang et al. (2018) in-
troduced LibPecker, which uses class dependencies as code
features and employs fuzzy class matching to identify TPLs.
Although this method has high time complexity during the
feature matching phase, its similarity-based feature calcula-
tion based on package structure provides valuable insights
for future research.

In vulnerability detection, Zhao et al. (2023b) conducted
a large-scale empirical study to explore dependency vulner-
abilities. Using the Veracode SCA tool, they analyzed 450
projects in Java, Python and Ruby, revealing that "denial
of service" and "information leakage" are common vulner-
ability types across these languages. They also found that
high-severity vulnerabilities are more frequent in Java and
Python projects. Additionally, the study showed that the
number of direct dependencies in a project has a greater
impact on vulnerabilities than on factors such as project age
or commit frequency. Furthermore, Ivanova et al. (2024)
highlighted that even small metadata modifications can sig-
nificantly affect SCA tool detection, leading to false positives
or negatives.

In license detection, Zhao et al. (2023b) proposed an effi-
cient and accurate model for identifying license texts, which
includes an extraction module and a recognition module.
Experimental results demonstrated that this model outper-
forms typical existing license detection tools in terms of both
accuracy and recall. However, current SCA tools still fall
short in license detection, especially in complex dependency
networks, where identifying which dependencies pose gen-
uine risks remains challenging (Dann et al., 2021).

Building on these findings, our study expands the evalua-
tion scope by incorporating six curated datasets across mul-
tiple dimensions, including Java and binary dependencies,
multi-language projects, complex licensing, and adversarial
scenarios. Unlike prior studies that focused on a single detec-
tion capability, our evaluation integrates dependency detec-
tion, vulnerability identification, and license recognition into
a unified, cross-scope assessment using both commercial
and open-source tools. This approach enables a comprehen-
sive examination of SCA tool performance under realistic
conditions that better reflect modern software development
practices.

8. Conclusion
This study systematically evaluates the capabilities of

SCA tools in OSS governance by introducing a comprehen-
sive evaluation model covering dependency detection, vul-
nerability identification, and license recognition. The frame-
work focuses on multi-language ecosystems, source and
binary dependency tracking, and adversarial threat. Using
standardized test sets and quantitative metrics, the results
reveal substantial performance gaps across tools and sce-
narios. While some tools perform well in source-based,
single-language settings, they often struggle in more com-
plex scenarios. These challenging conditions demonstrate
that SCA tools are not yet ready to meet the demands
of real-world software supply chain environments. These
findings suggest that current SCA tools function as practical
tools in idealized conditions, but remain limited toys when
exposed to the real-world software supply chain risks. The
study underscores the need for better multi-language sup-
port, more reliable binary analysis, and stronger resilience
against evolving threats. Although it offers targeted recom-
mendations for tool developers, users, and researchers, the
study has certain limitations, including dataset diversity and
tool selection constraints. Additionally, temporal factors and
evolving attack techniques may affect the generalizability
of the results. Our future research will prioritize enhancing
SCA tool readiness for these challenging scenarios to refine
evaluation methodologies and improve tool effectiveness,
ultimately advancing OSS security and governance.
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