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ARTICLE INFO ABSTRACT
Dataset link: https://zenodo.org/records/1453 Context: Accurate assessment of developers’ output is crucial for both software engineering research and
2880 industrial practice. This assessment often relies on software product metrics such as lines of code (LOC) and
Keywords: quality metrics from static analysis tools. However, existing research lacks a comprehensive understanding
Developers’ output assessment of the usage patterns of product metrics, and a single metric is increasingly vulnerable to manipulation,
Software metrics manipulation particularly with the emergence of large language models (LLMs).
Industrial practice Objectives: This study aims to investigate (1) how developers can intentionally manipulate commonly used
Software efficiency metrics metrics like LOC by using LLMs, (2) whether complex efficiency metrics provide consistent advantages over
Software quality metrics simpler metrics, and (3) the reliability and cost-effectiveness of quality metrics derived from tools such as
SonarQube.
Methods: We conduct empirical analyses involving three LLMs to achieve metric manipulation and evaluate
product metric reliability across nine open-source projects. We further validate our findings through a collab-
oration with a large financial institution facing fairness concerns in developers’ output due to inappropriate
metric usage.
Results: We observe that developers can inflate LOC by an average of 60.86% using LLMs, leading to
anomalous assessments. Complex efficiency metrics do not yield consistent performance improvements relative
to their computational costs. Furthermore, quality metrics from SonarQube and PMD often fail to capture real
quality changes and are expensive to compute. The software metric migration plan based on our findings
effectively reduces evaluation anomalies in the industry and standardizes developers’ commits, confirming our
conclusions’ practical validity.
Conclusion: Our findings highlight critical limitations in current metric practices and demonstrate how
thoughtful usage patterns of product metrics can improve fairness in developer evaluation. This work
bridges the gap between academic insights and industrial needs, offering practical guidance for more reliable
developers’ output assessment.
1. Introduction output is critical for software managers. In open source settings, they
enable the identification of potential long-term maintainers, which
Software is profoundly reshaping our world. As DevOps continues is essential for the sustainable development of software projects [7].
to gain prominence, its philosophical underpinnings [1-3] intensify the In industrial settings, they supports fair and reasonable allocation of
focus on software efficiency within the software engineering discourse. compensation and salaries, thereby improving overall team efficiency
This leads to a rigorous examination of how developers’ output is mea- and productivity [8].

sured impartially. Developers’ output [4-6] is defined as a composite
score derived from various software metrics collected throughout the
software development process, providing a comprehensive reflection
of both efficiency and work quality. Accurately assessing developers’

Managers’ understanding of software metric usage patterns directly
affects the precision of the comprehensive evaluation and the quantita-
tive evaluation of the developers’ output [9-11]. Software metrics are
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generally categorized into two types [12]: process metrics, which re-
flect aspects of the software development process, and product metrics,
which capture characteristics of the software artifact. Product metrics
can be further divided into efficiency metrics (e.g., lines of code (LOC),
code complexity) and quality metrics (e.g., number of defect). Recent
research [4,5,9] increasingly focuses on optimizing the usage patterns
of software metrics, particularly product metrics. The usage patterns
of a software metric in assessing developers’ output hinges on the
unique aspects it measures and its reliability and time costs compared
with similar metrics. With the growing popularity of large language
models (LLMs) assisted software development and the introduction of
more complex developers’ output assessment metrics and models, there
remains a gap in our understanding of how LLMs influence output
assessment and the usage patterns of software product metrics.

As LLMs become increasingly adopted in software development,
developers are able to effectively leverage LLMs to complete assigned
coding tasks, thereby enhancing their delivery efficiency [13]. Some
studies [9,12] point out that developers can manipulate automated
measurement tools, causing software product metrics to misrepresent
their actual contributions. However, there remains an unclear under-
standing of the extent and methods by which developers may manipu-
late software product metrics using LLMs, posing potential ethical risks.
To assess the potential impact of LLMs on the usage patterns of software
product metrics, we aim to address the following research question.

RQ1: Can developers intentionally increase the lines of code
metric by utilizing large language models? We construct function
code, with one version written by humans for Leetcode problems and
the other rewritten by LLMs. We find that developers can intention-
ally increase the LOC metric using LLMs, with an average increase
of 60.86%, which potentially leads to the LOC anomalies. Different
LLMs exhibit divergent strategies to increase LOC, which fundamentally
differ from the approaches used by traditional developers to manipulate
these metrics.

The LOC metric is one of the most commonly used indicators for
evaluating developers’ output in terms of software efficiency. But LOC
is often considered to reflect only a partial view of a developer’s
output. Some studies [5,7] propose more complex software efficiency
metrics by combining multiple simple efficiency metrics, aiming to
better reflect developers’ output. However, these complex metrics often
incur higher costs and are rarely compared against simple efficiency
metrics. To provide insights into the usage patterns of both complex
and simple software efficiency metrics, we seek to answer the following
research question.

RQ2: Are complex efficiency metrics completely superior to
simple ones? We compare complex and simple metrics across 9 open
source repositories and conduct case studies to explain observed dif-
ferences. We find that complex metrics do not consistently outperform
simpler ones across all projects, and their costs are often much higher,
indicating that their practicality is not as good as initially expected.

Software quality metrics obtained from static analysis tools (SATSs)
[14] are widely used in the evaluation of developers’ output, while
prior studies [15-17] show that these tools often produce false pos-
itives. Previous research often focuses on their capability to identify
issues in bug-introducing commits. In the assessments of developers’
output, however, quality metrics need not only to indicate the degra-
dation of software quality but also to reflect improvements in software
quality. It remains unclear whether changes in these quality metrics
can accurately capture developers’ contributions to software quality.
To provide insights into the usage patterns of quality metrics derived
from SATs, we address the following research question.

RQ3: Can quality metrics derived from static analysis tools re-
liably reflect developers’ output? We monitor the changes of quality
metrics during commit processes, focusing on instances of bugs being
introduced or fixed, which highlights key concerns for developers. We
discover that the quality metrics obtained from SonarQube and PMD
fail to accurately capture quality changes in developers’ commits. On
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average, getting the software quality metrics takes SonarQube 86.82 s
per commit and PMD 15.70 s per commit, showing a high time cost.

To validate the practical relevance of our findings, we collabo-
rate with a large financial institution to address cases of inaccurate
developers’ output assessments caused by incorrect usage patterns of
software product metrics. The company in our study employs over
8000 professionals and uses the LOC metric as an objective reference
for assessing developers’ output. However, issues with the software
product metrics, such as unusually high LOC changes caused by code
cloning, lead to unfair assessments and compensation problems. The
company in our study notices an increasing number of these issues
and raise concerns about the practicality and reliability of the current
metrics, highlighting the need for a more reliable and fair approach to
assessing developers’ output. Recognizing that relying solely on LOC is
not fair, the company develops a plan to revise the software product
metrics. This plan aims to introduce new metrics while addressing and
correcting the problems with the current ones, and the new metrics
will be able to effectively measure developers’ output while offering
a lower-cost method of evaluating all past commits in the software
repositories. Additionally, the company finds that existing software
development practices are severely disrupted by the improper use of
current product metrics, and aims to complete this migration plan in a
relatively short time.

To address the company’s concerns, we conduct a rapid review
of the use of software metrics in past developers’ output assessment
schemes in academic research to provide the company with a wider
range of software metrics for consideration. We find that software
product metrics are widely used in academic research for developers’
output assessment, particularly LOC-based metrics and quality metrics
from SATs. Next, we examine the practicality of the software metrics
that the company plans to use. Based on our findings, we provide
the company with four recommendations for the migration plan and
gather feedback from three experienced developers’ output assessment
managers through a semi-structured interview of one hour. Finally, we
continuously monitor the effectiveness of the final plan.

As a result, the company adopt the following four points as part
of the software metrics migration plan: (1) Introducing a model for
detecting LLM-rewritten code in the future, (2) Using SonarQube only
to measure the quality of the latest software repository as a reference
for developers’ quality behavior, without including its quality metrics in
the developers’ output assessment, (3) Introducing the ELOC metric to
measure different aspects of code efficiency while keeping the original
LOC-based metrics, especially NALOC, as a supplementary reference,
and (4) Using a combination of software metrics and process metrics,
and apply mathematical models with process metrics to reduce anoma-
lies in cases of software metric issues. After 5 months of continual
observation, we find that the new developers’ output assessment way
greatly reduce the previous output score anomalies. This indicates that
our research findings play a role in shaping the usage patterns of
software metrics in developers’ output assessment, bridging the gap
between industrial practices and academic research.

This paper makes the following contributions:

We explore how developers can intentionally manipulate the LOC
metric using LLMs, leading to significant anomalies that affect the
fairness and effectiveness of developers’ output assessments.

We provide a thorough evaluation of existing product metrics,
with a particular focus on efficiency metrics and quality metrics
from SATs, assessing their practicality and cost-effectiveness.
We conduct a rapid review of quantitative metrics used in past
developers’ output research to help the company select rele-
vant software metrics, providing guidance for future quantitative
assessments of developers’ output.

We establish a connection between academic research on soft-
ware product metrics and practical applications in the industry,
demonstrating how academic insights can influence real-world
developers’ output assessment practices.
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The rest of the paper is organized as follows: Section 2 provides
an overview of our background and related work. Section 3 explains
the research questions and the approaches used in our research. Sec-
tion 4 presents the experiment and results, followed by answers to
the research questions. Section 5 covers a practical study. Section 6
discusses implications and the threats to the validity of our study.
Finally, Section 7 concludes the paper and suggests directions for future
work.

2. Background and related work

This section describes research related to developers’ output assess-
ment and the software efficiency and quality metrics.

2.1. Assessing developers’ output

Developers’ output [5,6,8] is defined as the contributions and efforts
made by developers in delivering code during the software develop-
ment process. Open-source communities, in their efforts to encourage
developers to maintain open-source software, require an understand-
ing of the ranking of these contributions [7]. Similarly, commercial
companies, in order to fairly compensate developers, need to quantify
individual outputs [8]. Toward these ends, the assessment of devel-
opers’ output is often measured by quantifiable metrics, providing a
specific score or rating.

The software development process provides a rich set of metrics for
assessing developers’ output. Depending on their source, these metrics
can be categorized into process metrics and product metrics [12].
Process metrics refer to the measurable parameters generated by de-
velopers during the software development process, such as story points
and commit frequency, which are often influenced significantly by
subjective human factors. Product metrics, on the other hand, involve
the measurement of the code submitted by developers, such as LOC
and cyclomatic complexity, reflecting the state of the code itself more
objectively.

Furthermore, software product metrics can be subdivided into soft-
ware efficiency metrics and software quality metrics based on the
aspects they measure. Software efficiency metrics indicate the quantity
and complexity of the code evaluated from the developer, for example,
the number of new lines of code changed and complexity. Software
quality metrics reflect the quality of the code evaluated from the
developer, such as the introduction of new bugs or code smells. The
two types of metrics provide different kinds of value for assessing
developers’ output.

Existing research [18-20] quantitatively determines the final output
score by integrating multiple software process and product metrics
based on the dimension of developers’ output reflected by software
metrics. For instance, Lima et al. [21] evaluate contributions using
repository mining metrics, incorporating not only LOC but also quality
metrics related to bugs and fixes. Similarly, Diamantopoulos et al. [22]
examine 19 repository metrics, proposing quantifiable measures of soft-
ware development flow. Young et al. [23] introduce the ‘All Contribu-
tors’ model to recognize diverse contributions in open source projects,
such as communication and community management. Furthermore, a
prominent ICT company develop a human-centric quality assurance
framework to quantitatively assess software engineers’ output [6,24].
This framework synthesizes various quantitative metrics and employs
techniques like TOPSIS and linear programming for team evaluations,
alongside iForest for individual assessments. Li et al. [25] design an
explainable measure for quantifying the contributions of industry de-
velopers and collected software metrics as well as process metrics by
interviewing 18 experienced software engineers. Collectively, these ap-
proaches emphasize the necessity of incorporating multiple dimensions
of developer activity to achieve a holistic understanding of developer
contributions.
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2.2. Complex software efficiency metrics

Metrics derived from source code, such as LOC, are proposed as in-
dicators of developer contributions [26,27]. However, these metrics are
limited in that they do not capture the true value or quality of the out-
put. Ren et al. [5] define the developmental value of code as a combi-
nation of structural value and non-structural value. They introduce the
DevRank algorithm, which leverages call graphs to quantify developer
contributions through a Learning-to-Rank (L2R) method. Nonetheless,
they do not address how to determine weights for different modification
types or whether L2R parameters are consistent across projects. In
response to these limitations, Sun et al. [7] propose CVALUE, a method
that measures developer contributions by integrating syntactic and
semantic information across four dimensions: modification volume,
understandability, inter-function impact, and intra-function impact.

2.3. Software quality metrics of static analysis tools

SATs are essential for early identification and remediation of soft-
ware vulnerabilities, as highlighted by Tahaei et al. [28]. However,
concerns regarding the reliability of their outputs persist. Nachtigall
et al. [29] conduct a systematic usability evaluation of 46 SATs, re-
vealing significant usability issues: over half of the tools provide poor
warning messages, and about 75% lack effective support for fixes.
This raises questions about their practicality in real-world applications.
Building on this, Lenarduzzi et al. [16] assess the agreement and
precision of six widely used SATs for Java across 47 projects, find-
ing minimal consensus and low precision in their recommendations.
Trautsch et al. [14] further explore SATs’ defect detection capabilities,
indicating that while they could theoretically detect up to 76% of
defects identified in code reviews, actual coverage varies, with style
checkers and AST pattern checkers identifying only 25% of defects.
Additionally, Mehrpour and LaToza [30] examine the influence of au-
tomated SATs on software quality, using PMD for Java. Their findings
suggest that defect-prone files receive fewer warnings, correlating with
a decline in warning density.

2.4. Motivation

Existing research on developer productivity frequently focuses on
constructing improved metrics or models, lacking analysis of the impact
of LLM-assisted development and the application patterns of specific
metric types. Specifically, current studies exhibit gaps in the following
three areas:

The potential implications of LLM-assisted development on
metrics. Prior studies [9,12] indicate that some software metrics can
be fooled by developers due to improper usage. Understanding the
advantages and usage of specific metrics for assessing developers’
output over similar ones can reduce output deviations. Our research
bridges the gap in the usage patterns of specific software product
metrics for developers’ output assessment. Moreover, existing research
also neglects the impact of LLMs on software metrics in developers’
output, despite their growing use in software development.

The selection and application of software efficiency metrics.
While these advanced software efficiency metrics mentioned in Sec-
tion 2.2 offer a more nuanced understanding of contributions, they
often involve significant time costs [7], and prior studies do not suf-
ficiently explore the utility of simpler software efficiency metrics. Be-
sides, these studies claim that complex metrics can completely replace
simple ones. This paper investigates the practicality of these simpler
metrics in comparison to more complex alternatives.

The selection and application of software quality metrics ob-
tained via SATs. Notably, while these studies mentioned in Section 2.3
often focus on quality deterioration, they typically do not verify the
reliability of quality improvements. In developers’ output assessments,
enhancements in quality are rewarded, while declines lead to penalties.
This study aims to address this gap by examining the verification of
quality improvements.
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Fig. 1. Overall framework of our research.

3. Research method

This section introduces our research framework, the motivations
and context behind the research questions, as well as the method.

3.1. Overall framework

Fig. 1 outlines a structured approach to exploring the usage patterns
of product metrics to assess developers’ output in both industrial and
academic contexts. In the academic setting, we explore the specific
usage patterns of software product metrics, focusing on LLMs’ impact
on these metrics and the reliability of specific types. We then apply the
identified reliability in industry where software metrics are misused, as
detailed in Section 5.

3.2. Research questions

To explore the usage patterns of software product metrics in assess-
ing developers’ output, we design three research questions. First, we
investigate whether LLMs can further fool existing software product
metrics. Then, we compare the reliability and time costs of current
software efficiency and quality metrics. The research questions are
described below.

RQ1: Can developers intentionally increase the lines of code
metric by utilizing large language models? With the growing popu-
larity of LLMs in code generation, existing research ignores the impact
of LLMs on software product metrics in developers’ output. In this
context, we aim to investigate whether developers can leverage LLMs
at minimal cost to artificially increase the LOC score, thus providing a
potential explanation for anomalies in software metrics.

RQ2: Are complex efficiency metrics completely superior to
simple ones? An increasing number of complex software efficiency
metrics are being developed by integrating multiple simple efficiency
metrics and specialized algorithms to avoid the negative impacts that

single simple efficiency metrics may have on the assessment of de-
velopers’ output. However, prior research does not provide evidence
that these complex efficiency metrics are more practical than most
simple metrics. To investigate whether these complex efficiency metrics
yield more practical outcomes across most projects compared to simple
metrics, we introduce several widely applied simple metrics from the
field of software engineering.

RQ3: Can quality metrics derived from static analysis tools
reliably reflect developers’ output? Quality metrics obtained from
SATs are widely used to represent changes in software quality. Previous
research focuses on their capability to identify issues in bug-introducing
commits. In the assessments of developers’ output, however, quality
metrics need not only to indicate the degradation of software quality
but also to reflect improvements in software quality. Therefore, we
explore whether commonly used SATs can accurately reflect the impact
developers have on code quality.

For each research question, we propose the following hypotheses to
better articulate our position.

Hypothesis 1: With the assistance of large language models, devel-
opers can more easily manipulate the LOC metric, and such manipula-
tions are difficult to detect.

Hypothesis 2: When using a single software efficiency metric to
evaluate output, complex metrics do not provide a more accurate
reflection of developers’ output than simple metrics.

Hypothesis 3: Quality metrics obtained from static analysis tools
do not reliably reflect the actual contributions developers make to
software quality.

3.3. Evaluation method for LLM influence

To investigate the remarkable capabilities of LLMs in code gener-
ation, we conduct a study examining the effects of LLMs on product
metrics at different levels of code structure. We follow [31] to use
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Final Prompt

As a code master, please generate or
modify the following code snippet to

ensure it remains functionally

lines of code and decrease code
comment lines.

The code snippet follows:{code}

Fig. 2. Overall framework of our prompt design.

LeetCode problems, and select their solutions as original code func-
tions. LeetCode is a platform that offers a collection of programming
problems.

Then, we use GPT-40-mini, Copilot, and Gemini-2.5-flash to gener-
ate rewritten versions of these function codes. Our selection of these
three models is based on three principles tailored to the specific needs
of developer-driven metric manipulation.

First, we address the developers’ usage cost. Since developers ma-
nipulate LOC primarily to achieve higher ratings or corresponding
rewards, the use of paid models (e.g., Claude-Pro) or models requiring
self-deployment (e.g., CodeLlama) may introduce significant economic
costs or technical barriers. This does not align with their practical
motivations. Therefore, we prioritize models that are publicly available
or do not incur additional costs.

Second, we consider both the performance and timeliness of the
models. We favor models that not only demonstrate superior perfor-
mance but are also relatively new, as these models provide better
generation results and better reflect the current technical environment
developers are likely to adopt. Based on this principle, we ultimately
select GPT-4o0-mini and Gemini-2.5-flash as representative models.

Finally, we integrate the developers’ actual application contexts.
We assume that developers may either use readily accessible online
models or integrate models into commonly used development tools.
Given that Copilot is a widely studied and commonly used development
tool in the software engineering field, we introduce Copilot as a typical
representative for such scenarios.

All models are accessed via their respective official chat interfaces,
maintaining the default parameter configurations as set on their official
websites. Specifically, for Copilot, we integrate the GPT-4.1 model.
These generated codes are submitted to LeetCode to verify their accu-
racy. If the generated code fails the tests, we regenerate new code until
it passes.

We choose the LOC metric as our manipulation target for two
main reasons. First, LOC is the most widely used product metric to
assess development output [32]. Second, previous studies [9,12] ex-
plicitly highlight the methods of manipulating LOC, providing a useful
comparison to LLM-based manipulations.

Fig. 2 illustrates the specific process and strategies we use to con-
struct the prompt. Our prompt design strictly follows and operational-
izes the framework proposed in [33], systematically applying three
strategies — Persona, Context Conveyor, and Meta Language Creation
— around the core goal of “LOC Manipulation”.

First, we apply the Persona strategy to adjust the model’s output
perspective and style. We instruct the model to assume the role of a
“code master”, aiming to guide it to generate more professional code
from the perspective of a code expert, thereby aligning with software
engineering practices.

Next, we use the Context Conveyor strategy to precisely control the
LLM’s contextual environment, strictly limiting its output to a specific
task scope. We achieve this by clearly defining the following four
constraints:

Task Definition: The model is instructed to “generate or modify”
code snippets.

Functional Constraint: The model must “ensure the correctness of
the code functionality”, which is the most crucial prerequisite.

Goal Instruction: We explicitly ask the model to “increase LOC”.

Exclusion Instruction: The model is instructed to “reduce the
number of comment lines” to prevent it from achieving the goal by
simply adding comments, which would be ineffective.

Finally, we adopt the Meta Language Creation strategy to establish a
formal structure for the data format the model processes. We formalize
the input using a fixed template: “The code snippet follows: code”,
ensuring that the model accurately identifies the code content to be
processed and distinguishes it from the instruction part.

We comply a dataset comprising 50 instances where LLMs have suc-
cessfully rewritten code to pass tests on LeetCode. These instances can
be accessed at https://zenodo.org/records/14532880. We use cLoc [34]
to measure the LOC metrics between the original and rewritten versions
of the code.

3.4. Evaluation methods for efficiency metrics

3.4.1. Software efficiency metrics choice

We ultimately select five efficiency metrics derived from prior re-
lated research in assessing developers’ output. Specifically, we select
three simple efficiency metrics (which reflect only one aspect of code
information): New Added Lines of Code, Unit_Complexity, and Lines of
Code, alongside two more complex ones (which reflect multiple facets
of code and are often synthesized from a combination of several simple
metrics): ELOC and CVALUE. Detailed introductions to each follow.

Lines of Code (LOC): This is a rudimentary approach that gauges
developers’ output by tallying the number of lines changed in code
revisions tracked by version control systems. It counts both added and
deleted lines to assess the effort per commit. Though straightforward,
it might not accurately reflect the intricacy of code changes or the true
contribution of the developer, as it overlooks semantic context.

New Added Lines of Code (NALOC): This method quantifies a
developers’ output by counting the number of new lines added in code
modifications submitted through version control systems. It posits that
the addition of new lines of code primarily represents the bulk of a
developer’s work, while deleted lines make only a minor contribution.

Unit_Complexity: This metric measures the complexity of unit
source code using McCabe’s cyclomatic complexity [35]. A ‘unit’ refers
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to the smallest executable part of the source code, such as a method
or function. Originally applied in software maintainability engineer-
ing models [36], higher complexity in unit source code in a single
commit suggests greater developers’ output by the developer. Because
developers require more time to complete more complex code [37,38].

ELOC: ELOC [5] is a more sophisticated technique that considers not
only the quantity but also the type and complexity of code changes. By
analyzing changes in the Abstract Syntax Tree (AST), including various
types of node modifications (additions, deletions, or alterations) and
edit operations (such as moves or renames), ELOC aims to provide a
more nuanced assessment of developers’ output.

CValue: CValue [7] is a multi-dimensional method for assessing
developers’ output, incorporating information on the volume of code
changes, code comprehensibility, inter-function and intra-function im-
pacts across four dimensions. Through syntactic and semantic analysis
of source code modifications, CValue quantifies code alterations using
AST differences, measures code readability with complexity metrics,
analyzes inter-function interactions via call graphs, and evaluates intra-
function influence through program dependency graphs. Its objective
is to offer a comprehensive and precise scoring system for developers’
output.

3.4.2. Method

We assess the relationship between the rank order of manually
assigned labels and the rank order of efficiency metrics by calculating
the Spearman’s rank correlation coefficient to determine whether the
efficiency metrics reflect the actual output. The following is a detailed
explanation.

Human Labels: We adopt the human-labeled scores from the dataset
introduced in [7], which serve as indicators of the contribution level
of each code commit to the respective project. These labels are meticu-
lously assigned by at least two experienced programmers, who evaluate
the significance of the changes made in each commit. Contributions
that do not affect the code semantics, such as code formatting ad-
justments, are given lower scores, reflecting minimal impact on the
project.

Evaluation Metrics: The comparative method follows the approach
outlined in [7], utilizing Spearman’s rank correlation coefficient as a
statistical measure to evaluate the effectiveness of methods assessing
developers’ output. Spearman’s coefficient quantifies the strength of as-
sociation between two datasets, specifically the consistency of rankings.
When evaluating methods for assessing developers’ output, Spearman’s
coefficient can compare the correlation between ranks derived from
manual labeling and those obtained from automated assessment meth-
ods. Ranging from —1 to 1, values closer to 1 or —1 indicate greater
agreement between the assessment method’s outcomes and manually
labeled results. The higher this metric, the more it suggests that the
evaluative efficiency metrics are in line with the standards for assessing
developers’ output. By calculating Spearman’s coefficient, the accuracy
and reliability of different developers’ output assessment methods in
software efficiency aspect can be assessed.

3.5. Evaluation methods for quality metrics

3.5.1. Software quality metrics choice

We choose the SonarQube Community 9.9 LTA and PMD-7.15.0 to
obtain the corresponding quality metrics. This is because these tools
are widely used in the software development processes of related enter-
prises [39,40]. We use the official default configurations of SonarQube
and PMD to obtain the software quality metrics after each developer’s
commit.

For SonarQube, we select the following three quality metrics.

new_bugs (Bug): This metric indicates the total number of reli-
ability issues first identified in new or recently changed code. Reli-
ability measures the software’s ability to perform its intended func-
tions consistently over time and under specified conditions. Tracking
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new_bugs helps ensure that the software maintains high performance
and stability.

new_code_smells (Smell): This metric represents the total number
of maintainability issues identified for the first time in new or recently
modified code. Maintainability is the ease with which software can be
repaired, improved, and understood. High levels of new_code_smells
can indicate potential problems that may increase the cost and com-
plexity of future maintenance and development efforts.

new_violations (Violation): This metric indicates the total number
of issues first identified in new or recently modified code. An issue
is a problem that prevents the code from adhering to Clean Code
standards [41], which are defined by a set of rules specific to the
programming language used. When a coding rule is violated, an issue
is raised, affecting one or more aspects of software quality.

For PMD, we select the following three metrics based on the guide-
lines from its official website.

Code style: The number of violations of rules that enforce a specific
coding style before and after each commit. This metric reflects changes
in the consistency of the code format.

Best practice: The number of violations of rules that enforce gener-
ally accepted best practices before and after each commit. This metric
reflects potential improvements or regressions in the code robustness,
maintainability, and security.

ALL: The number of violations of relevant Java rules before and
after each commit. This metric provides a global view of the code
quality across all detectable dimensions in PMD.

3.5.2. Method

We observe the dynamic changes in the indicators provided by
SonarQube and PMD when examining bug-fixing commits and bug-
introducing commits, to evaluate the effectiveness of SonarQube and
PMD. The specific details are as follows.

Quality-changing commits: Our investigation focuses on bug-
fixing and bug-introducing commits, which reflect genuine code quality
concerns encountered by developers during the software development
process. We consider both bug-fixing and bug-introducing commits as
quality-changing commits. The SZZ algorithm [42-44] is commonly
used to identify bug-introducing commits based on bug-fixing com-
mits. In our approach, we first use keyword matching on commit
messages to identify bug-fixing commits. Subsequently, we apply the
SZZ algorithm to detect bug-introducing commits that have captured
developers’ attention. The goal is to assess whether static quality analy-
sis tools accurately report quality changes when developers make these
commits.

Evaluation Metrics: Recall and False Positive Rate (FPR) are crit-
ical metrics used to assess the reliability of SATs in identifying code
issues. True Positive (TP) refers to instances where SATs correctly iden-
tify changes in quality metrics that correspond to either bug-fixing or
bug-introducing commits. Conversely, False Positive (FP) occurs when
SATs flag changes in quality metrics as problematic, even though the
commit does not actually involve fix bugs or introduce new bugs. True
Negative (TN) indicates situations where SATs accurately identify that
no significant changes in quality metrics have occurred, meaning the
commit neither fixes nor introduces bugs. False Negative (FN) refers to
cases where SATs fail to identify changes in quality metrics that should
have been flagged as either bug-fixing or bug-introducing commits. The
specific calculation formulas for Recall and FPR are as follows:

TP

n=_1°2 1

Recall = 757N M

FPR= 1P __ )
FP+ TN

1 https://pmd.github.io/pmd/pmd_rules_java.html.
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Table 1
Project information.
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Project Developers LOC Files Commits Human lables
apache/commons-release-plugin 17 3639 43 895 148
apache/commons-exec 31 4684 72 1170 150
apache/commons-cli 69 10,372 86 1490 150
apache/commons-ognl 19 22,418 316 991 150
apache/rocketmq 653 232,936 2030 8419 135
apache/httpcomponents-core 97 84,428 959 3827 145
apache/httpcomponents-client 127 76,198 762 3641 158
google/guice 119 74,696 647 2110 124
google/gson 164 37,558 261 1993 84

The evaluation of these metrics provides insights into the precision
and recall of SATs’ issue detection capabilities, which are essential
for maintaining software quality and efficiency in the development
process. High recall ensures that most actual bugs are identified, while
a low FPR minimizes unnecessary alerts, thus improving developer trust
in the tool.

4. Experiment and result
4.1. Experiment projects selection

We select projects based on the following principles: 1. Only single-
language Java projects are chosen; 2. The software metrics we compare
are obtainable from the projects.

The decision to focus on single-language Java projects is based
on several considerations. Firstly, the assessments of developers’ out-
put necessitates a differentiated approach when dealing with diverse
programming languages. Secondly, Java projects are frequently incor-
porated within established evaluation frameworks. It is noteworthy
that the state-of-the-art model, CValue, provides its findings exclusively
on Java-centric projects. Consequently, these factors have led to the
selection of Java projects.

Due to the lack of detailed implementation tools and critical in-
formation such as Abstract Syntax Tree node weights provided by
CValue, we follow the ten datasets previously evaluated by CValue.
After manually verifying the accuracy of these datasets, nine of them
are selected for our empirical research (the alibaba/fastjson dataset is
excluded due to missing and inaccurate data).

Table 1 presents an overview of the nine chosen projects. The
human labels depict the developers’ output ratings manually assigned
by Sun et al. [7], which focus solely on the software efficiency aspect.
The first five projects are sourced from the OSS-Fuzz list of ongoing
fuzz testing initiatives. These projects have histories that include both
feature additions and maintenance activities on existing code. The re-
maining four projects are smaller in scale, with simpler functionalities,
and their modification histories largely consist of maintenance rather
than new function introductions.

4.2. RQI: Can developers intentionally increase the lines of code metric by
utilizing large language models?

4.2.1. Result analysis

Fig. 3 presents a box plot of the LOC growth rate after the functions
were rewritten by LLMs. We observe that all the replicated functions
show an upward trend in LOC, with an average increase of 60.86%.
Among these rewritten functions, the LOC growth varies depending on
the LLM used. The Copilot-GPT4.1 model resulted in the highest aver-
age growth rate of 73.86%, while the GPT-40-mini model exhibited the
lowest average growth rate at 39.56%. The GPT-40-mini model showed
the weakest ability to increase LOC among the three models, with the
smallest function increasing by only 1.47%. Although the Gemmi-2.5-
flash model demonstrated an average growth rate of 69.18%, similar
to Copilot-GPT4.1, its high standard deviation of 0.4553 and maximum
value of 211.11% revealed the instability of the Gemmi-2.5-flash model

in metric manipulation. This empirical result warns that LLMs may be
used to systematically interfere with developers’ output assessments
based on LOC, and developers can achieve more than a 50% increase
in LOC ratings through LLMs.

Fig. 4 also presents three scatter plots comparing the growth rate
of code rewritten by different LLMs with the original LOC. Although
the growth rate varies across different LLMs for the same code, it
is generally observed that functions with smaller original LOC tend
to exhibit higher growth rates. As the original LOC increases, the
growth efficiency produced by all LLMs gradually decreases. As ob-
served during the dataset construction, functions with larger LOC are
more challenging for LLMs to correctly refactor and often fail to pass
Leetcode tests, thus compromising the accuracy of the function.

4.2.2. Case study

To further analyze the approaches different LLMs take when increas-
ing the LOC metric, we manually analyze all samples to summarize
their patterns. Figs. 5 and 6 show two examples we select to better
illustrate the conclusions of our summarized patterns. The problem of
Fig. 5 requires the user to solve the task of finding the length of the
longest valid (well-formed and contiguous) parentheses sub-string in a
given string that contains only the characters ‘(" and ‘)’. The problem of
Fig. 6 asks to find and return the maximum sum of submatrix elements
that does not exceed a given integer k, for a matrix of size m X n.

Different LLMs exhibit varying preferences in how they increase
the LOC metric. Compared to traditional developers who add dead
code to manipulate metrics, LLMs often change the code itself. These
changes are hard for managers to spot. For all LLMs, they introduce new
intermediate variables to store intermediate values. In the original code
(a), s.charAt(i) is directly used for comparison with the corresponding
character. In the rewritten code (b), this value is stored in a newly
declared variable current-Char.

For the Gemmi-2.5-flash model, its preferred method is to introduce
a large number of new intermediate variables to store intermediate
values. In Fig. 5, it defines three additional intermediate variables
currentChar, previousIndex, and currentLength to expand
the function. This preference leads to difficulty in expanding human-
written code when there are fewer intermediate variables that can be
extended. In Fig. 6, we observe that due to the limited availability of
expandable intermediate variables in human-written code, it is unable
to effectively expand the LOC.

For GPT-40-mini, additional LOC growth is achieved by introducing
extra helper functions and external libraries. For introducing extra
helper functions, the original code (a) concentrates all logic within
the main loop, whereas the rewritten code (b) decomposes distinct
responsibilities into separate functions, such as handleOpeningParenthe-
sis() and handleClosingParenthesis(). For introducing external libraries,
the rewritten code (b) adds the import java.until.Stack statement to
declare the data structure used, specifically the stack. We attribute
the relatively low growth rate in Fig. 6 to the simplicity of the code
logical structure, as well as the use of existing Java library functions
for encapsulation.

For Copilot-GPT-4.1, it further increases LOC by refactoring the
code logic. In Fig. 5, it rewrites the for (int i = 0; i < s.
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GPT-40-mini

Copilot-GPT4.1

Model Name

Gemmi-2.5-flash

0.5

0.0
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Fig. 3. Boxplot of growth ratio between rewritten code and original code.

GPT-40-mini vs Human
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Fig. 4. Scatter plot of original code vs. growth ratio.

length(); i++) loop as while (i < s.length()), resulting
in additional LOC. Therefore, even in the sample in Fig. 6, where
Gemmi-2.5-flash and GPT-40-mini struggle to achieve LOC expansion,
Copilot-GPT-4.1 successfully manipulates LOC.

Finding 1. LLMs can manipulate the LOC metric through the
preferred methods they employ, significantly increasing the LOC
score via rewriting. However, due to the limitations of the LLMs’
code expansion preferences, this results in their inability to sig-
nificantly expand the LOC score when dealing with certain types
of human-written code.

4.3. RQ2: Are complex efficiency metrics completely superior to simple
ones?

4.3.1. Result analysis

Table 2 displays the Spearman correlation coefficients between
three simple metrics (NALOC, Unit_Complexity and LOC) and two com-
plex metrics (ELOC and CValue) compared against manually assigned
labels, with the better-performing metrics highlighted in bold.

Performance of Simple Metrics vs. Complex Metrics: In five out
of the analyzed projects, NALOC proves to be a more effective metric
for assessing developers’ output than either ELOC or CValue. On aver-
age, NALOC surpasses the best-performing complexity metric by 1.80%.

Notably, in the google/guice project, NALOC outperforms CValue,
the top complexity metric, by approximately 14.95%. Similarly, in the
apache/commons-exec and apache/commons-cli projects, the
Unit_ Complexity measure is more effective than CValue, exceeding it
by 4.29% and 8.77%, respectively.

Conversely, in two projects, apache/rocketmq and google/
gson, the complex metrics demonstrate a slight advantage over the
simple metrics. In the apache/rocketmq project, CValue marginally
outperforms NALOC by about 0.32%, indicating nearly equivalent ef-
fectiveness. In the google/gson project, ELOC and CValue show
more significant improvements over the simple metrics, with ELOC
surpassing the best simple metric by 7.52% and CValue by 3.11%.
However, due to inaccuracies in a portion of the ELOC data, only 22 out
of 84 commits in the google/gson project have valid ELOC results,
which do not yield statistically significant findings. The lack of specific
parameter values for ELOC and CValue’s implementation logic prevents
a deeper investigation into the discrepancies observed.

Comparison of Simple Metrics: Among the simple metrics, NALOC
consistently surpasses LOC in measuring code changes, as adding
code generally requires more effort than removing them. However,
Unit_Complexity exhibits significant variability, influenced by its cal-
culation per commit, focusing on changes involving constructs such as
if statements and for loops, which are not uniformly distributed.
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1. class Solution { 1. import java.util.Stack;
2.  public int longestValidParentheses(String s) { 2. class Solution {
3 Stack<Integer> stack = new Stack<>(); 3. public int longestValidParentheses(String s) {
4. stack.push(-1); 4. Stack<Integer> stack = new Stack<>();
5. int max_len = 0; 5. stack.push(-1);
6 for (int i = 0; i <s.length(); i++) { 6. int maxLength = 0;
7 if (s.charAt(i) =="(") { 7. for (int i = 0; i <s.length(); i++) {
8. stack.push(i); 8. char currentChar = s.charAt(i);
9. }else { 9. if (currentChar =='(") {
10. stack.pop(); 10. handleOpeningParenthesis(stack, i);
11. if (stack.isEmpty()) { 11. } else {
12. stack.push(i); 12. handleClosingParenthesis(stack, i);
13. } else { 13. maxLength = updateMaxLength(stack, i, maxLength);
14. max_len = Math.max(max_len, i - stack.peek()); 14. }
15. } 15}
16. } 16. return maxLength;
7.} 17. }
18. return max_len; 18. private void handleOpeningParenthesis(Stack<Integer> stack, int index) {
19. } 19. stack.push(index);
20.} 20. }
21. private void handleClosingParenthesis(Stack<Integer> stack, int index) {
22. stack.pop();
23. if (stack.isEmpty()) {
24. stack.push(index);
25}
26. }
27. private int updateMaxLength(Stack<Integer> stack, int currentIndex, int
currentMaxLength) {
28. if (!stack.isEmpty()) {
29. int validLength = currentIndex - stack.peek();
30. return Math.max(currentMaxLength, validLength);
3.}
32. return currentMaxLength;
33. }
34}
(a) Original Code (b) ) GPT-40-mini Code
1. class Solution { 1. class Solution {
2.  public int longestValidParentheses(String s) { 2. public int longestValidParentheses(String s) {
3. Stack<Integer> stack = new Stack<>(); 3 Stack<Integer> stack = new Stack<>();
4. stack.push(-1); 4. stack.push(-1);
5. int max_len = 0; 5. int maximumLength = 0;
6 inti=0; 6. for (int currentIndex = 0; currentIndex < s.length(); currentIndex++) {
7 while (i < s.length()) { 7 char currentChar = s.charAt(currentIndex);
8. char currentChar = s.charAt(i); 8. if (currentChar =="'(") {
9. if (currentChar =="(") { 9. stack.push(currentIndex);
10. stack.push(i); 10. } else {
11. }else { 11. stack.pop();
12. stack.pop(); 12. if (stack.isEmpty()) {
13. if (stack.isEmpty()) { 13. stack.push(currentIndex);
14. stack.push(i); 14. } else {
15. } else { 15. int previousIndex = stack.peek();
16. int len =i - stack.peek(); 16. int currentLength = currentIndex - previousIndex;
17. if (len > max_len) { 17. maximumLength = Math.max(maximumLength, currentLength);
18. max_len = len; 18. }
19. } 19. H
20. } 20. }
21. } 21. return maximumLength;
22. i+ 22.
23. } 233
24. int result = max_len;
25. return result;
26. }
27}

(c) Copilot-GPT4.1- Code

(d) Gemini-2.5-flash Code

Fig. 5. A case of original and rewritten code snippets.

Table 2

Spearman correlation of metrics vs. Human labels.
Project Simple metric Complex metric

NALOC Unit_Complexity LOC ELOC Cvalue

apache/commons-release-plugin 0.7233 0.5099 0.7062 0.5337 0.7084
apache/commons-exec 0.5907 0.6887 0.4947 0.6018 0.6458
apache/commons-cli 0.4598 0.6614 0.3685 0.5718 0.5737
apache/commons-ognl 0.6214 0.5703 0.5319 0.5491 0.6210
apache/rocketmq 0.8978 0.4885 0.8650 0.7550 0.9010
apache/httpcomponents-core 0.8230 0.5000 0.7526 0.7158 0.7935
apache/httpcomponents-client 0.5623 0.3885 0.4741 0.5161 0.5351
google/guice 0.8430 0.5578 0.5842 0.5481 0.6935
google/gson 0.7472 0.4276 0.5778 0.8224 0.7783
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1. class Solution { 1. import java.util. TreeSet;
2.  public int maxSumSubmatrix(int[][] matrix, int k) { 2. class Solution {
3 int ans = Integer.MIN_VALUE; 3. public int maxSumSubmatrix(int[][] matrix, int k) {
4 int m = matrix.length, n = matrix[0].length; 4 int ans = Integer. MIN_VALUE;
5. for (inti=0; i <mj; ++i) { 5. int m = matrix.length;
6. int[] sum = new int[n]; 6. int n = matrix[0].length;
7. for (int j =1i; j <m; ++j) { 7 for (int i = 0; i <m; ++i) {
8. for (int ¢ = 0; ¢ <nj ++¢) { 8. int[] sum = new int[n];
9. sum|c] += matrix[j][c]; 9. for (int j =1i; j <mj; ++j) {
10. 10. for (int ¢ = 0; ¢ <n; ++c) {
11. TreeSet<Integer> sumSet = new TreeSet<Integer>(); 11. sum|[c] += matrix[j][c];
12. sumSet.add(0); 12. }
13. ints=0; 13. TreeSet<Integer> sumSet = new TreeSet<Integer>();
14. for (int v : sum) { 14. sumSet.add(0);
15. s+=v; 15. ints=0;
16. Integer ceil = sumSet.ceiling(s - k); 16. for (int v : sum) {
17. if (ceil !=null) { 17. s+=v;
18. ans = Math.max(ans, s - ceil); 18. Integer ceil = sumSet.ceiling(s - k);
19. } 19. if (ceil != null) {
20. sumSet.add(s); 20. ans = Math.max(ans, s - ceil);
21. } 21.
22. } 22. sumSet.add(s);
23. } 23. }
24. return ans; 24. }
25. } 25. }
26.} 26. return ans;
27. }
28.}
(a) Original Code (b) GPT-40-mini Code
1. class Solution { 1. class Solution {
2. public int maxSumSubmatrix(int[][] matrix, int k) { 2. public int maxSumSubmatrix(int[][] matrix, int k) {
3. int maxResult = Integer MIN_VALUE; 3. int maxPossibleSum = Integer.MIN_VALUE;
4. int rowCount = matrix.length; 4. int numRows = matrix.length;
5. int colCount = matrix[0].length; 5. int numCols = matrix[0].length;
6. int rowStart = 0; 6. for (int rowStart = 0; rowStart < numRows; rowStart++) {
7. while (rowStart < rowCount) { 7. int[] columnSums = new int[numCols]|;
8. int[] colSum = new int[colCount]; 8. for (int rowEnd = rowStart; rowEnd < numRows; rowEnd++) {
9. int rowEnd = rowStart; 9. for (int collndex = 0; collndex < numCols; collndex++) {
10. while (rowEnd < rowCount) { 10. columnSums|[collndex] += matrix[rowEnd][colIndex];
11. int collndex = 0; 11.
12. while (collndex < colCount) { 12. TreeSet<Integer> currentPrefixSums = new TreeSet<>();
13. int curr = matrix[rowEnd][colIndex]; 13. currentPrefixSums.add(0);
14. colSum|collndex] = colSum|[colIndex] + curr; 14. int runningSum = 0;
15. colIndex = collndex + 1; 15. for (int value : columnSums) {
16. H 16. runningSum += value;
17. java.util. TreeSet<Integer> sumSet = new 17. Integer ceilingValue = currentPrefixSums.ceiling(runningSum - k);
java.util. TreeSet<Integer>(); 18. if (ceilingValue != null) {
18. sumSet.add(0); 19. maxPossibleSum = Math.max(maxPossibleSum, runningSum -
19. int prefixSum = 0; ceilingValue);
20. int valuelndex = 0; 20. }
21. while (valuelndex < colSum.length) { 21. currentPrefixSums.add(runningSum);
22. int value = colSum|[valuelndex]|; 22. }
23. prefixSum = prefixSum + value; 23. }
24. Integer ceilingValue = sumSet.ceiling(prefixSum - k); 24.
25. if (ceilingValue != null) { 25. return maxPossibleSum;
26. int possible = prefixSum - ceilingValue; 26. }
27. if (possible > maxResult) { 27.}
28. maxResult = possible;
29. }
30. }
31. sumSet.add(prefixSum);
32. valuelndex = valuelndex + 1;
33. }
34. rowEnd = rowEnd + 1;
3s.
36. rowStart = rowStart + 1;
37. }
38 return maxResult;
39. }
40.}

(c) Copilot-GPT4.1- Code

(d) Gemini-2.5-flash Code

Fig. 6. A low LOC growth rate case of original and rewritten code snippets.

Time Expenditure for Metric Acquisition: Table 3 details the time
required to acquire both simple metrics and the CValue metric across
9 projects. The study reveals that, in most cases, complex metrics like
CValue and ELOC offer little to no advantage over simple metrics. In
fact, they often perform worse. The cost discrepancy between adopting
CValue, considered the most advanced evaluation method, and using
simple metrics is also examined.

For the nine projects where CValue can be evaluated, the time
required to obtain CValue for a single commit is significantly higher
than for simple metrics. On average, it takes 95 times longer to

10

obtain CValue, with the maximum being 170 times longer. The min-
imum ratio is 24 times longer, observed in the apache/commons-
release-plugin project, which has a relatively smaller codebase.
Larger projects exhibit a disproportionately greater increase in the time
required to obtain CValue metrics compared to simple metrics.

4.3.2. Case study
Case 1: Simple Metrics vs. Complex Metrics

In the google/guice project, we select the commit with the
hash value bb59fbfe998dc741162fdee658ba8f45b7069c53 as
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Table 3
Time costs of acquiring simple & CValue metrics.
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Project Simple metric CValue metric

Detected Time cost (s) Detected Time cost (s)
apache/commons-release-plugin 891 0.73 653 17.91
apache/commons-exec 1170 0.63 755 38.21
apache/commons-cli 1490 0.54 1176 91.23
apache/commons-ognl 991 0.98 809 72.83
apache/rocketmq 8419 1.34 / /
apache/httpcomponents-core 3827 1.46 3674 (200) 99.17
apache/httpcomponents-client 3641 1.00 3376 (200) 93.82
google/guice 2110 1.51 2017 (200) 105.64
google/gson 1993 0.92 1706 (200) 89.81

a case. The human label for this commit in the project is the high-
est within the repository, reflecting its significant contribution to the
project. After manually reviewing the commit, we find that it develops
one of the core features of the library and provides related test code.
We observe that the ELOC measure for this commit is 0.02, and the
CVALUE measure is 3.07, both of which significantly underestimated
the value of this commit. Meanwhile, the simpler metrics, such as LOC
(1100) and Unit_complexity (1), better reflected the true value of the
commit. We believe the primary reason for this discrepancy is that both
CVALUE and ELOC are calculated based on the AST tree, while the main
contribution of this commit is in Kotlin files, which could not be parsed
by these tools as AST, leading to the underestimation of its contribution.
This case illustrates that although complex metrics capture multiple fac-
tors, they can sometimes overlook contributions that are well-measured
by simpler metrics, leading to misinterpretations due to the limitations
of the tools.

Case 2: NALOC vs. LOC

In the apache/httpcomponents-client project, we select
the commit with the hash value de5c6a237a7af88d7£3e127£8c
9e41e8e38db7£6 as a case. The human label for this commit in the
baseline dataset is 0, as the commit only removes sample code from
the project, as described in its commit message: “Deleted sample code
moved to HttpComponents Website project”. When we measure this
commit using LOC and NALOC, we observe that since only three Java
files are deleted, the NALOC value is 0, while the LOC value is 269.
LOC misestimates the contribution of the deleted code, whereas NALOC
accurately captures the contribution of this change. Therefore, when a
commit removes a large amount of irrelevant code, LOC measurement
can become skewed, but NALOC remains unaffected.

Finding 2. Complex code metrics do not consistently offer ad-
vantages over simple ones across various projects, and their high
costs raise questions about their practical applicability in real-
world scenarios. It is not advisable to completely replace simple
metrics with complex ones. In contrast, NALOC is posited as
a superior, streamlined metric that enhances the assessment of
developers’ output with increased efficiency.

4.4. RQ3: Can quality metrics derived from static analysis tools reliably
reflect developers’ output?

Tables 4 and 5 present metrics related to false positive occurrences,
the precision of detecting genuine issues, and the average time invest-
ment associated with SATs. The evaluation is contextualized within the
framework of each commit that introduces or fixes bugs across nine
projects.

Perception of Developers’ Key Quality Behaviors: The accuracy
of all metrics from SonarQube and PMD across the nine projects aver-
ages below 40%, with both tools exhibiting a false positive rate below
30%. Furthermore, the tools’ ability to perceive developers’ key quality
behaviors is strongly correlated with the project characteristics. For
SonarQube, the average recall rate for the bug metric, which detects
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critical defects, is only 8.51%, while maintaining the lowest average
false positive rate of 6.97%. In terms of code smell detection, the
smell category achieves an average recall rate of 32.69%, but the false
positive rate increases to 24.34%. The accuracy of the rule violation
metrics closely resembles that of the smell metric, with an average
recall rate of 33.25% and an average false positive rate of 25.04%.
Cross-project analysis reveals that apache/rocketmq achieves the
highest recall rate for the Bug metric at 19.30%, while google/gson
obtains a recall rate of 44.35% for the smell metric, confirming that
tool performance is significantly affected by project characteristics. For
PMD, the code style metric achieves an average recall rate of 23.64%,
but it also generates an average false positive rate of 21.69%. Of
particular note is the apache/commons-release-plugin project,
which achieves a 95.71% recall rate for code style but with an alarm-
ingly high false positive rate of 96.72%, reflecting significant issues
with the credibility of the detection results. In contrast, the best prac-
tices metric demonstrates more conservative behavior, with the average
recall rate dropping to 13.03% and the false positive rate reducing
to 11.32%, indicating that while this metric has a better ability to
control false positives, it suffers from a higher rate of missed detections.
Overall, the combined rule metrics show a fluctuation in the average
recall rate at 18.63% with an average false positive rate of 15.51%.

Time Consumption of Static Analysis Tools: The two tools ex-
hibit significant differences in time efficiency. SonarQube’s average
time cost is 86.82 s, indicating its high computational expense. The
execution times across projects show considerable variability, ranging
from 18.33 s to 223.62 s. Larger projects demonstrate a clear time
burden, with the google/guice project taking up to 223.62 s, and
two projects exceeding 100 s. This time consumption strongly correlates
with project size and complexity, suggesting that the tool’s computa-
tional resource requirements increase non-linearly with code volume.
Although smaller projects, such as apache/commons-exec, remain
within an acceptable time frame of 18.33 s, the overall time expense
could challenge the responsiveness of continuous integration pipelines.
In contrast, PMD offers better operational efficiency, with the average
analysis time across all measured projects remaining steady at 15.70 s,
and execution times ranging from 10.39 s to 19.87 s, reflecting a
reasonable distribution. This slight variability is positively correlated
with project size and complexity, as the apache/rocketmq requires
only 10.39 s, while the apache/commons-ognl takes 19.87 s.

Finding 3. The metrics provided by both SonarQube and PMD
fail to accurately detect key software quality changes in de-
velopers’ output. Additionally, both tools incur substantial time
costs, particularly SonarQube. These limitations restrict the utility
of static analysis tools in providing appropriate and valuable
assessments of code quality in developers’ output assessments.

5. Practical study
5.1. Industrial scenario for assessing developers’ output

We collaborate with a comprehensive securities company that em-
ploys over 8000 people. This company is a listed securities financial
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Table 4

Performance & Efficiency metrics for SonarQube.
Project Time cost (s) Bug Smell Violation

Recall FPR Recall FPR Recall FPR

apache/commons-release-plugin 32.72 0.0184 0.0081 0.0982 0.0478 0.0982 0.0533
apache/commons-exec 18.33 0.0424 0.0230 0.2783 0.1117 0.2736 0.1148
apache/commons-cli 47.34 0.0782 0.0494 0.3691 0.1612 0.3758 0.1603
apache/commons-ognl 45.23 0.0547 0.0232 0.3593 0.2167 0.3672 0.2202
apache/rocketmq 121.07 0.1930 0.1255 0.3729 0.2535 0.3779 0.2600
apache/httpcomponents-core 117.26 0.1122 0.1153 0.3281 0.3530 0.3381 0.3696
apache/httpcomponents-client 132.21 0.0972 0.0894 0.3628 0.3745 0.3861 0.3902
google/guice 223.62 0.0980 0.1409 0.3303 0.3212 0.3321 0.3263
google/gson 43.65 0.0717 0.0529 0.4435 0.3511 0.4435 0.3587
Avg. 86.82 0.0851 0.0697 0.3269 0.2434 0.3325 0.2504

Table 5

Performance & Efficiency metrics for PMD.
Project Time cost (s) Code style Best practice ALL

Recall FPR Recall FPR Recall FPR

apache/commons-release-plugin 16.67 0.9571 0.9672 0.3252 0.2131 0.1043 0.0383
apache/commons-exec 16.90 0.0963 0.0667 0.0667 0.1024 0.1037 0.0802
apache/commons-cli 15.66 0.1477 0.0927 0.2685 0.2738 0.1924 0.1170
apache/commons-ognl 19.87 0.1526 0.0612 0.0684 0.0362 0.1842 0.0886
apache/rocketmq 10.39 0.2851 0.2097 0.2010 0.1508 0.3500 0.2573
apache/httpcomponents-core 13.58 0.0753 0.1243 0.0284 0.0438 0.1449 0.2042
apache/httpcomponents-client 14.03 0.0900 0.1309 0.0726 0.0751 0.1727 0.2187
google/guice 17.43 0.1906 0.1804 0.0980 0.0797 0.2396 0.2263
google/gson 16.76 0.1326 0.1189 0.0435 0.0441 0.1848 0.1649
Avg. 15.70 0.2364 0.2169 0.1303 0.1132 0.1863 0.1551

holding group that offers a full range of professional integrated finan-
cial services, including securities, futures, asset management, wealth
management, investment banking, investment consulting, and securi-
ties research. The company in our study uses a combination of process
metrics and product metrics to comprehensively assess the developers’
output, assigning each developer a score at the end of every month to
reflect their output for that period. Besides, the company in our study
only uses LOC as the metric for software efficiency and does not adopt
software quality metrics.

Recently, personnel responsible for assessing developers’ output at
the company reports anomalies in the LOC software metric, leading to
incorrect evaluations of several developers’ output. This raises concerns
about the fairness of the company’s compensation practices. One ex-
ample is the LOC changes made by developers each month, which is
a commonly used efficiency metric for evaluating developers’ output.
We track the LOC changes for a software development department con-
sisting of eight members. Several members of this department record
monthly LOC changes that far exceeds the expected upper limit. Upon
manual inspection of their code commits, we discover that many of
these commits are cloned from their previous repositories. This phe-
nomenon raises concerns within the company about the reliability of
the software metrics used. Given that the evaluation of certain software
metrics in some projects may produce anomalies, the relevant evalua-
tors within the company seek a clearer understanding of the current
status of these anomalies in software metric occurrences. The company
agrees that even if only a portion of project outputs are incorrectly
assessed, it can impact the fairness of developers’ output assessments.
The company in our study is particularly interested in understanding
the use of software metrics in academic research. Moreover, the com-
pany seeks to investigate the usage patterns of both software efficiency
and software quality metrics. To achieve these objectives, we provide
both theoretical support and practical observations for software metrics
migration plan.

When selecting new software metrics, the company aims to focus
on both effectiveness and cost. Effectiveness refers to the company’s
desire for the new metrics to accurately reflect developers’ output and
deliver good results across most projects. Cost refers to the company’s
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goal of ensuring that the new metrics can be applied to every commit
in past repositories within a reasonable computational cost. Given
that developers tend to submit their code at the end of the month,
collecting relevant developer metrics at this time could require more
than three days to process. To prevent the existing flawed developers’
output evaluation models from further damaging developers’ trust in
managers [45,46], we avoid directly involving developers in specific
software output evaluation schemes, such as through surveys.

5.2. Rapid review

Since the company’s current system for assessing developers’ output
relies solely on LOC as a metric, there is limited familiarity with al-
ternative software metrics. Therefore, we aim to review past academic
research on software metrics, focusing on commonly used software
quality and efficiency metrics. This review will provide alternative
options for migration plan. In addition, the company requires the
completion of the migration plan in a short time frame.

5.2.1. Previous researches metrics collection

Due to the significant impact of abnormal software metrics on the
company’s current software projects, as discussed in Section 5.1, the
company aims to quickly develop a software metrics migration plan
within a limited time. Considering that our literature review is based
on practical needs and has a greater sensitivity to time, we adopt the
Rapid Review method. Rapid Review [47,48] is a secondary research
strategy that accelerates the traditional Systematic Review process. The
goal is to significantly shorten the time required to collect, analyze,
interpret, review, and publish evidence that may benefit practitioners.
Although some concessions are made in the methodology to provide
evidence to practitioners more promptly, Rapid Review still follows
systematic protocols. Specifically, we follow the guidelines for Rapid
Review [49] and integrate the approach by Rico et al. [50], selecting
a rapid review to examine the quantitative metrics used for developer
output assessment in previous academic literature.

Fig. 7 illustrates our Rapid Review framework. First, a team is
formed consisting of four software engineering researchers and three
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Fig. 7. Overall framework of rapid review.

experienced industry developers with expertise in output assessment
management to understand the specific needs, as described in Sec-
tion 5.1. The team reaches a consensus on the actual industry needs, as
well as the objectives and roles for the rapid review process.

In the second step, the research team, based on discussions, formu-
lates the research question: Which software metrics are widely used
for assessing developers’ output in academia? The scope of the search
is agreed to focus on quantitative metrics for assessing developers’
output. Subsequently, the team establishes the criteria for literature
selection and requirements for the Rapid Review, while considering the
timeliness demands.

In the third step, we conduct searches across several databases, in-
cluding Google Scholar, IEEE Xplore, and the ACM Digital Library. We
adhere to the principle [49,51,52] of searching relevant content within
a limited number of databases to accelerate the Rapid Review process.
For constructing the search strings, we refer to the literature [50] and
initially design the strings based on our expertise, testing their effec-
tiveness across different search ranges. Based on the search results, we
assess the relevance of the returned papers to our research questions.
Prior to conducting the search, we present the potential search strings
to practitioners and finalize the search string based on their feedback.
The search string “(software OR developer) AND (performance OR
output OR contribution)” is used to identify relevant studies in the
title. The search is limited to publications between January 2021 and
March 2024, without restrictions on publication types. Initially, 200
papers are collected, and after manual screening, papers not related to
quantitative assessment are excluded, leaving 18 papers. Specifically,
the team members first examine the titles and abstracts to filter out
irrelevant papers, then proceed to a deeper review to determine their
relevance to software metrics for developers’ output assessment. In
addition, using a snowballing technique, we identify additional papers
by examining the references of the selected studies. The team aims
to compensate for any papers potentially overlooked due to the time
constraints of the Rapid Review process. By carefully applying this
systematic approach, we obtain a final set of 22 papers.

In the fourth step, we analyze the use of process and product
metrics, with particular attention to efficiency and quality metrics
within product metrics. Finally, the team shares the results and selects
the software metrics that the company plans to adopt.
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Table 6
Developers’ output evaluation factors in reviewed papers.

Metric factor Mentioned paper

[4,6,22,23,27,39,53-60]
[4-7,19,21-23,26,27,40,54,61,62]
[6,19,21-23,26,27,39,40,54,61]

Process metric
Software efficiency metric
Software quality metric

Table 7
LOC related efficiency & SATs quality metrics in reviewed papers.

Metric Mentioned paper

[4,6,19,21,22,26,27,40,54,61,62]
[6,22,39,40,54]

LOC related
Quality metric in SATs

5.2.2. Result

We present a coarse-grained overview of the factors to which
the metrics belong in various developers’ output assessment schemes.
Specifically, we focus on software efficiency metrics related to LOC and
software quality metrics associated with SATs.

Table 6 presents the factors utilized for developers’ output assess-
ment, as derived from the papers we have collected.

In the entirety of the collected literature, only 22.7% (5 out of
22) of the documents comprehensively took into account all categories
of metric factors. software efficiency metrics and process metrics are
prominently considered as primary factors in developers’ output, with
approximately 65% (14 out of 22) of the articles referencing the use
of indicators related to these aspects. In contrast, the least considered
software quality metric factor category is included in just 50.0% (11
out of 22) of the reviewed papers as part of their evaluation criteria.

Table 7 exhibits the application of software efficiency metrics as-
sociated with LOC and software quality metrics acquired through the
employment of SATs, as presented in the reviewed papers.

Within the gamut of methodologies employing source code at-
tributes, a notable 78.6% incorporate metrics that are intimately associ-
ated with LOC, highlighting its prevalent consideration. Conversely, in
the context of strategies that hinge upon quality attributes, a substantial
45.5% of the methodologies derive their metrics from the applica-
tion of automated SATs, underscoring the centrality of these tools in
contemporary quality assessment practices.
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Table 8

Repository T1 LOC range distribution of commits by month.
Month [0,100) [100,1000) [1000,5000) [5000,10 000) [10000, +oo0)
2023-02 1 0 0 0 S5
2023-03 0 0 0 1 7
2023-04 O 0 0 0 4
2023-05 0 0 0 0 3
2023-06 O 0 0 0 5
2023-07 O 0 0 0 5
2023-08 0 0 1 0 3
2023-09 0 0 6 0 5
2023-10 2 1 1 1 2
2023-11 1 1 0 0 2

Finding 4. Current output assessment methods primarily rely
on a limited set of factors, with LOC related metrics remaining
the dominant approach for measuring software efficiency met-
rics. Additionally, automated SATs are becoming increasingly
essential for effectively assessing software quality metrics.

5.3. Difficulty in replication study

We do not choose industrial projects to replicate our study. The pri-
mary reason is that developers make abnormal commits to fool software
metrics, lowering development quality in software repositories. Besides,
some research tools cannot be used commercially (e.g., ELOC [63]), and
data is restricted by company confidentiality.

To further highlight the anomalies in the current software reposi-
tory, we select a typical repository, T1. Table 8 shows the LOC metrics
for developer submissions over the 10 months before the company’s
software metrics migration plan. It is clear that developers rarely
submitted code with fewer than 1000 LOC, instead preferring to submit
commits with more than 10,000 LOC per submission. Specifically, from
April 2023 to July 2024, all submissions exceeded 10,000 LOC. This
shows that developers tend to make tangled commits [64], includ-
ing a large amount of functional code in a single commit. Previous
research [64,65] shows that tangled commits increase maintenance
costs and further increase defect proneness. These tangled commits far
exceed the expected workload for developers, indicating poor software
development and maintenance practices within these repositories.

Fig. 8 shows the change in the total number of commits per month
for the T1 project during the same 10-month period. We observe that in
most months, the number of commits is fewer than 10, with the lowest
number of commits being only 3 in one month. This raises further
concerns about the quality of industry projects.

Overall, the submissions in these repositories, which do not meet
the company’s development standards, contribute to abnormal software
metrics and lead to developers’ output assessments that do not reflect
their actual workload. In most of the company’s projects, the develop-
ment practices are poor and do not follow the expected standards. As
a result, both the research team and company management agree that
these repositories do not accurately reflect the role of software metrics
in assessing developers’ output.

5.4. Industry feedback methods

To ensure that the company’s software metrics migration plan ad-
dress its needs, we begin preparing the plan in December 2023, working
closely with the company. The plan is officially launched in July
2024. Throughout this process, we held weekly one-hour unstructured
meetings with three experienced developers’ output managers to report
on developer commit behaviors that caused software metric anomalies.
These meetings ensure that both the company and our team shared a
common understanding of the issues and supported the development
of the migration plan. Once the plan is nearing finalization, we con-
duct a one-hour semi-structured interview with the management team,
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during which we present our research methods and findings, offering
recommendations tailored to the company’s situation. We then collect
feedback on our conclusions from the developers’ output managers. By
integrating the feedback with our research results, the company is able
to finalize the migration plan. To track its effectiveness, we continue
to hold weekly one-hour meetings to monitor any new anomalies in
the revised software metric assessment model over the following five
months.

5.5. Research recommendations

Based on the four findings in Sections 4 and 5.2.2, we provide
four practical recommendations for the company’s software metrics
migration plan with the expectation that our results will have a positive
impact on the migration plan. We offer the following four recommen-
dations.

For Finding 1: We recommend introducing an LLM-generated code
detection model, such as GPTSniff [66] or DetectGPT [67], to identify
code generated by LLMs in developer commits. However, these models
currently focus on code directly generated by LLMs at the function
level. In future improvements, we aim to develop a commit-level de-
tection model that determine if the code is edited by an LLM to change
its output score.

For Finding 2: We recommend that the company retain simple
metrics alongside complex ones for reference. While simple metrics
may only reflect one aspect of developer efficiency, they can highlight
details that more complex metrics may overlook.

For Finding 3: We recommend that the company avoid using Sonar-
Qube to remeasure every commit in existing repositories, as this would
be time-consuming. Given the low accuracy of SonarQube’s quality
metrics, they should not be included in developers’ output assessments.
However, they can still serve as a reference for monitoring changes in
software quality.

For Finding 4: We recommend the company use both process
metrics and product metrics to balance the subjectivity and objectivity
of developers’ output. While product metrics may show anomalies,
process metrics, with their more subjective nature, can help mitigate
the impact of these anomalies on output assessment. This combined
approach can enhance fairness and reliability in evaluating developers’
performance.

5.6. Software metrics migration plan

Based on the findings from our study, the company has developed
a software metrics migration plan to improve the fairness and accuracy
of evaluating developers’ output. This plan addresses the challenges
caused by non-standard code submissions, such as those generated by
LLMs, and aims to balance both objective and subjective metrics. The
following strategies are part of the migration plan.

5.6.1. Introducing code generation detection for LLMs in the future

Due to concerns that LLMs could be used by developers to cause
anomalies in LOC, the company hopes to introduce a detection mech-
anism for code rewritten by LLMs in the future. The main reasons the
company does not plan to introduce this model in the current initiative
are threefold. First, existing LLM code generation detection tools focus
primarily on detecting code directly generated by LLMs, which does
not meet the company’s needs. Second, after manual review by both
the company and our team, it is found that developers can use less
costly code cloning techniques to increase LOC. Third, LLM-rewritten
code tends to show better performance in increasing LOC in functions
with fewer LOC.
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Fig. 8. Monthly commit count of T1.

5.6.2. Retaining LOC-based efficiency metrics with new metrics

The company will continue using the traditional LOC-based metrics
to evaluate developer efficiency, but will also introduce new metrics
such as ELOC. Although complex software metrics incur high costs, as
observed in our subsequent review where the company only migrated
the metric measurements for a small portion of its libraries, they can
reflect more aspects of software efficiency. By combining LOC-based
metrics and ELOC, the company will get a better understanding of
developer efficiency across different repositories. This will allow for
a more complete evaluation of productivity and ensure that software
metrics are not overly focused on one aspect of development.

5.6.3. Using SonarQube for quality analysis only

SonarQube will be used solely for quality analysis, not for perfor-
mance evaluation. While SonarQube can help identify potential quality
issues in code, our study found that its quality metrics are not always
accurate in reflecting changes in developers’ work, with an accuracy
rate below 50%. Therefore, SonarQube will not be used to evaluate de-
veloper performance directly, but will still be helpful for understanding
the overall quality of the repository.

5.6.4. Combining product metrics with process metrics

The company will combine objective product metrics (e.g., LOC)
with subjective process metrics to better assess developers’ output.
Product metrics alone can be influenced by anomalies, such as non-
standard code submissions. Process metrics, such as the time spent
on tasks or collaboration efforts, will help provide additional context.
This approach allows the company to consider both the efficiency and
the quality of a developer’s work. By using both types of metrics,
the company can improve the accuracy of developer evaluations and
reduce the impact of metric distortions.

5.6.5. Selecting appropriate software product metrics

The selection of software product metrics fundamentally depends
on the specific needs of the organization. This process is inherently
contextual and involves critical trade-offs, rather than seeking a uni-
versal optimal solution. The primary task in selecting software product
metrics is to clearly define the core objectives of quantitative assess-
ment. Different goal orientations drive distinctly different combinations
of metrics.

A thorough evaluation of the inherent characteristics of candidate
metrics is essential, including their effectiveness in reflecting the tar-
get dimensions, robustness against manipulation, the comprehensive
cost of data collection, computation, and maintenance, as well as
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the interpretability of the results for stakeholders. Decisions must be
firmly grounded in the specific context of the project and organization,
considering factors such as project size, the availability of historical
data, and the feasibility cost of re-calculating metrics. The existing
toolchain also forms the technical foundation for the automation of
metric collection and integration.

At the strategy level, the company adopt a combination of core and
auxiliary metrics. For example, basic metrics such as NALOC, which
are low-cost, easily collected, and relatively robust, are used as core
metrics, while enhanced metrics such as the ELOC, which provide
deeper insights, are used as auxiliary metrics in key scenarios or when
resources allow. To mitigate the potential bias of using a single prod-
uct metric, multidimensional cross-validation should be performed by
integrating process metrics such as task complexity and collaboration
records.

Finally, the construction of a metric system is a dynamic process.
It is essential to establish continuous monitoring and iterative opti-
mization mechanisms, regularly evaluating the actual effectiveness and
cost-efficiency of the metric combination. Adjustments should be made
based on project evolution and feedback to ensure that the metrics
consistently serve the established business objectives. Due to confiden-
tiality requirements, the final metric combination cannot be disclosed
in detail. However, the aforementioned systematic framework ensures
that the metric selection decisions closely align with organizational
needs.

5.7. Continual observation

We select three industry software repositories to represent how
repositories starting at different times adapted to the new evaluation
system. As mentioned in Section 5.3, T1 is a long-term, ongoing soft-
ware repository. T2 is a repository that started development during
the preparation of the software metrics migration plan, starting in
April 2024. T3 is a repository that began development after the official
software metrics migration plan is launched, starting in July 2024. This
is because the company started preparing the software metrics migra-
tion plan in December 2023 and informed the relevant development
managers about the existing anomalies in the software metrics. In July
2024, the company officially informed developers about the new factors
in the developers’ output assessment system.

Fig. 9 shows the change in the total number of commits over time
for these three software repositories during this period. We find that
after the software metrics migration plan is implemented, developers
initially increased the number of code commits only in small amounts
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Fig. 9. Monthly commit count of three industrial repositories.
Table 9
LOC range distribution of three industrial repositories by month.
Month [0,100) [100,1000) [1000,5000) [5000,10 000) [10000, +o0)
2023-12 1 4 4 0 5
2024-01 0 4 5 0 1
2024-02 0 1 2 1 0
2024-03 0 0 2 1 1
2024-04 0 0 4 2 3
T1 2024-05 0 0 2 2 2
2024-06 0 2 3 1 5
2024-07 1 11 16 0 0
2024-08 8 52 6 4 0
2024-09 22 41 11 0 0
2024-10 31 65 11 0 0
2024-11 26 83 6 1 1
2024-04 0 1 0 1 1
2024-05 0 0 1 2 1
2024-06 0 0 2 1 1
™ 2024-07 0 0 4 0 0
2024-08 8 9 3 0 0
2024-09 16 9 4 0 0
2024-10 20 8 3 0 0
2024-11 17 14 2 0 0
2024-07 1 2 5 0 0
2024-08 6 6 2 0 0
T3 2024-09 7 8 1 0 0
2024-10 1 6 7 1 0
2024-11 7 24 3 0 0

during the first two to three months. After becoming more familiar with
the new software metrics system, developers begin to make more com-
mits. This suggests that after adopting the new software metrics system,
developers gradually standardize their commit processes. Developers
are now less inclined to submit tangled commits and instead break
them down. The change in the developers’ output assessment model
encouraged developers to submit more organized code, which in turn
helped improve software quality [65,68,69].

Lessons Learned 1. Developers need some time to adjust to the
new developers’ output assessment system. In the long run, this
adaptation will benefit the quality of the software delivered by
developers.

Table 9 shows the LOC metrics for developer commits in these three
software repositories, from the start of the software migration plan
preparation or the beginning of the project until November 2024.

During the preparation period for the migration plan, we observe
that in T1, after the company informed developers about the software
metric anomalies, developers reduced the number of commits with
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more than 10,000 LOC from January to May. They split these large
commits into smaller ones. However, in June, when the migration
plan had not yet been implemented, developers submitted five com-
mits with more than 10,000 LOC. In T2, since this project is newly
started, developers tried to avoid large commits, but they still did not
submit commits with fewer than 1000 LOC. This shows that after being
informed of the software metric anomalies, developers tried to avoid
making large LOC commits. However, since the software metrics used
for evaluation had not changed, after a few months of adjusting their
commit patterns, developers returned to making large LOC commits.

Lessons Learned 2. When the software metrics used in the devel-
opers’ output assessment system remain unchanged and develop-
ers are simply informed about existing anomalies, developers try
to change their commit patterns to avoid extreme software metric
scores. However, this does not fully fix the anomalies, and after
a period, developers submit commits causing extreme anomalies
in the software metrics again.
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After the new software metrics system is implemented, developers
in all three projects stop submitting commits with more than 10,000
LOC and mostly avoid commits larger than 5000 LOC. We find that
under the new software metrics system, developers mainly submit
commits with LOC between 100 and 1000, which aligns with the
small and micro commits recommended in the literature [70,71]. This
supports the idea that the old software metrics system led to unfair and
unreasonable developers’ output assessment.

Lessons Learned 3. The new software metrics system signif-
icantly reduces the occurrence of metric anomalies and helps
developers change their commit patterns, improving the quality
of software delivery.

6. Discussions
6.1. Ethical risks of LLM-assisted development

This study reveals the phenomenon where developers may ma-
nipulate assessment metrics through LLMs, and suggests the future
development of detection models for code generated by LLMs. While
this finding is crucial for ensuring the fairness of performance evalua-
tions, it is important to recognize the potential ethical risks associated
with overly restricting LLM tools, as such limitations could hinder the
revolutionary improvement in software development efficiency.

Firstly, the core demand of the software industry is to maximize
productivity and innovation efficiency. The use of LLM-assisted devel-
opment has been proven to accelerate code delivery. If such tools are
completely prohibited due to flaws in the evaluation system, it would
amount to “throwing the baby out with the bathwater”. Secondly,
excessive restrictions on LLM usage could lead to counterproductive
incentives. Developers may be forced to revert to inefficient manual
coding or turn to more covert forms of metric manipulation, such as
code cloning, which would further exacerbate evaluation distortion.

More importantly, the root of the problem lies in the inadequate
adaptability of the current developers’ output assessment system, rather
than the tools themselves. Therefore, we propose that the development
of detection models for LLM-generated code should aim to distinguish
between manually written code and code developed with LLM assis-
tance, providing a basis for evaluating developers’ outputs according to
different scenarios, rather than expecting the prohibition of LLM tools.
Furthermore, in Section 6.2.2, we anticipate new evaluation models for
developers’ outputs under LLM-assisted development.

6.2. Implications

Our study provides practical guidance on the usage patterns of soft-
ware product metrics in the context of developers’ output assessment.
These insights are particularly valuable for practitioners, researchers,
educators, and tool builders responsible for evaluating developers’
output.

6.2.1. Implications for practitioners

Implication 1: Goal-Oriented Usage Patterns.

Study Results: Finding 1 indicates that LLMs can significantly ma-
nipulate simple metric LOC through their preferred methods. Finding
3 reveals that existing software quality metrics derived from SATs do
not align with developers’ true quality contributions.

Analysis: This confirms that when managers overly emphasize
metric-driven evaluation models in developers’ output assessments,
developers tend to focus on improving metric scores rather than en-
hancing the actual quality, potentially undermining software quality
and team collaboration. On the other hand, this further suggests that
when managers adopt overly metric-driven usage patterns, they are
often influenced by the inherent evaluation biases of software product
metrics, leading to a skewed assessment of developers’ contributions.
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Therefore, we recommend that practitioners adapt the principle of
goal-oriented software product metrics usage.

Actionable Recommendation: Managers should focus primarily
on business and technical objectives such as timely delivery of value,
reducing production environment defects, and improving code main-
tainability. Software metrics should then be used as supplementary
tools to support, measure, and standardize high-quality development
processes, rather than as ultimate goals. As noted in [72], metrics must
be aligned with stakeholder goals from the outset.

Implication 2: Multi-Dimensional Usage Patterns.

Study Results: Findings 2 and 3 indicate that single-dimensional
software product metrics often suffer from inherent flaws due to their
calculation methods, such as inaccurate evaluations or excessive eval-
uation time.

Analysis: When only narrow aspects of software metrics are se-
lected for evaluation, these flaws are further amplified, leading to the
emergence of entangled commits in our practical scenarios, thereby
damaging software quality. Additionally, an excessive and broad mea-
surement process results in the accumulation of costs, leading to pro-
hibitively high expenses. Furthermore, Research [73] highlights that
such an over-measurement approach does not provide significant value.
As our practical study demonstrated, the software metrics usage pattern
we constructed considers the multi-dimensional aspects of the metrics
and balances their specific measurement value. Our findings suggest
that this new evaluation model better motivates developers to improve
delivery quality.

Actionable Recommendation: Managers should avoid over-relying
on single dimensions and instead expand the evaluation dimensions
to include code efficiency, quality, maintainability, and other fac-
tors, weighing the costs of collection against the actual value of the
metrics to more comprehensively and efficiently reflect developers’
contributions.

Implication 3: Usage Patterns Consistent with Scenario Re-
quirements.

Study Results: The lessons learned from our practical study show
that developers adjust their submission strategies based on the evalua-
tion system’s model, and the failure of the original evaluation system
highlights the need for updates based on the situation.

Analysis: If a particular metric exhibits persistent anomalies during
the evaluation process, managers should consider whether to replace
that metric and analyze its specific impact. Otherwise, the continued
use of that metric within the evaluation system may lead to long-
term negative consequences for the company, as seen in our practical
scenario.

Actionable Recommendation: Managers should gradually pro-
mote the iterative optimization of the evaluation system and metric
framework, guiding developers to adapt to new evaluation standards,
thereby improving software delivery quality over the long term. As
stated in [74], the usage patterns of software product metrics must
evolve according to the needs of the development scenario.

6.2.2. Implications for researchers

Implication 4: Building Developers’ Output Evaluation Systems
in LLM-Assisted Development Scenarios.

Study Results: Finding 1 indicates that the LOC metric is suscep-
tible to manipulation by LLMs, so traditional software product metrics
need to be adapted.

Analysis: The susceptibility of LOC to manipulation suggests that
traditional software metrics might not accurately reflect developer
effort or contributions when LLMs are involved. This challenges the
validity of existing metrics as proxies for productivity and underscores
the need to reassess their applicability in LLM-assisted contexts. Fur-
thermore, the value of LOC as a meaningful measure of output has
significantly diminished in such scenarios.

Actionable Recommendation: Future research should first clarify
the validity of traditional software product metrics in LLM-assisted
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development scenarios, as well as the extent to which they are influ-
enced. It aims to investigate whether existing software metrics remain
a valid proxy for developer effort and contributions in the context
of LLM-assisted software development. Additionally, future research
should further build on the value dimensions for measuring developers’
output in LLM-assisted development scenarios, as the value of the
LOC metric has been significantly reduced. Furthermore, future studies
should explore developers’ output assessment metrics based on LLM as
a Judge, which has already been proven to have unique value in the
software engineering field [75-77].

Implication 5: Optimizing the Cost-Effectiveness of Complex
Efficiency Metrics.

Study Results: Finding 2 indicates that current complex software
efficiency metrics incur high costs but do not comprehensively outper-
form simpler software efficiency metrics.

Analysis: This suggests that the additional computational and re-
source investments required for complex metrics do not yield propor-
tionally greater insights compared to simpler alternatives. The nar-
row focus on limited comparison dimensions may lead to biased or
incomplete conclusions about their effectiveness.

Actionable Recommendation: Future research needs to optimize
the calculation efficiency of complex software efficiency metrics to
support more efficient developers’ output assessment. Moreover, when
measuring the effectiveness of complex software efficiency metrics,
future research should incorporate a broader range of comparison
dimensions to avoid misunderstandings that may arise from focusing
on a single aspect.

Implication 6: Improving Quality Verification Methods.

Study Results: Finding 3 indicates that SAT tools have demon-
strated poor performance in assessing developers’ quality contributions.

Analysis: This poor performance stems from the fact that current
SAT tools lack tailored evaluation mechanisms for capturing real qual-
ity changes in developers’ output. The generic design of these tools fails
to accommodate configurable and context-aware criteria necessary for
accurate contribution assessment.

Actionable Recommendation: Future work should build evalua-
tion frameworks that can verify real quality changes. Existing SAT tools
are not specifically designed for measuring developers’ output contri-
butions, often neglecting the unique requirements within those con-
tributions. Future work should develop a quality analysis tool specifi-
cally for configurable evaluation criteria within the developers’ output
assessment process, as mentioned in [78].

6.2.3. Implications for educators

Implication 7: Incorporating Professional Ethics in Developers’
Output Evaluation in Software Engineering Curriculum.

Study Results: Finding 1 reveals that developers can significantly
manipulate LOC metrics by rewriting code to artificially inflate the LOC
score, leading to evaluation anomalies.

Analysis: This phenomenon highlights the real-world risks of metric
manipulation and its impact on evaluation fairness and software qual-
ity. Additionally, as reflected in the Lessons Learned, the developers’
behavior in manipulating metrics and the adaptation period to new
evaluation systems further emphasize this issue.

Actionable Recommendation: Educators should stress the impor-
tance of professional ethics in their curriculum, explicitly warning
students that any attempts to manipulate metrics through non-technical
means are not only ineffective but also undermine team trust, software
quality, and personal professional reputation. By incorporating the
results of this study into teaching cases, educators can provide students
with more realistic learning experiences and promote advancements in
software engineering education, particularly in evaluation ethics and
technical practices.
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6.2.4. Implications for tool builders

Implication 8: Introducing More Detection Features Related to
Developer Activities.

Study Results: As explicitly revealed in Finding 1, LLMs can manip-
ulate traditional metrics like LOC through their preferred code rewrit-
ing methods, significantly undermining the credibility of developer
output evaluations based on such metrics.

Analysis: The ability of LLMs to artificially inflate or distort conven-
tional metrics like LOC indicates that using simple code metrics alone
is no longer sufficient to accurately reflect genuine human developer
contributions. This manipulation poses a growing threat to fair and
trustworthy performance assessment.

Actionable Recommendation: Tool builders should incorporate
detection and identification features for LLM-generated code into de-
veloper output evaluation tools. This will provide managers with an
essential additional dimension to identify and filter out code potentially
aimed at exploiting metric systems, helping ensure evaluations better
reflect true developer effort and are based on more reliable data.

Implication 9: Enhancing Metric Visualization.

Study Results: Based on the lessons learned of our practical study,
developers often adjust their submission behavior due to the metrics set
in the evaluation system, but such adjustments do not always improve
code quality and may even lead to new anomalies. Findings 2 and 3
highlight the discrepancies between multiple software product metrics
and actual evaluations, as well as the high costs of some metrics.

Analysis: The behavioral changes triggered by metric-driven eval-
uation systems do not consistently align with genuine quality im-
provement goals, and may inadvertently encourage counterproductive
actions. The divergence between metric readings and real-world out-
comes, combined with substantial measurement costs, suggests that
an over-reliance on such metrics without clarifying their purpose and
constraints can misrepresent developer performance and introduce op-
erational risks.

Actionable Recommendation: Output evaluation tools should pro-
vide more intuitive and interpretable metric visualization interfaces to
help both managers and developers understand the actual meanings
and limitations of the metrics. Moreover, the tools should support
traceable analysis of metric data, helping users understand the code
change behaviors behind metric fluctuations, thereby preventing new
risks from arising due to blindly pursuing specific metrics.

Implication 10: Supporting Multi-Dimensional Integration.

Study Results: Finding 2 suggests that complex metrics are not al-
ways superior to simple metrics and may incur high costs. Validation in
industrial migration contexts in Section 5.6.4 confirms that a combined
“process + product” metric approach can be effective.

Analysis: This implies that hard-coding a fixed set of metrics into
development tools is inefficient, as no single metric or combination op-
timally serves all evaluation scenarios. Instead, metric utility depends
heavily on project-specific factors such as type, team maturity, and
quality objectives.

Actionable Recommendation: The tools should aim to provide a
flexible, configurable multi-dimensional metric integration framework.
This means that tools should not only offer a wide range of soft-
ware metric measurements but, more importantly, provide powerful
interfaces and configuration options that allow managers to easily
select, weight, and integrate different metrics based on specific project
contexts (e.g., project type, team maturity, quality goals).

6.3. Threats to validity

Several factors may limit the validity of our findings, which we
outline below. These potential threats encompass both internal and
external validity, as well as construct and conclusion validity.
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6.3.1. Construct validity

Our experiment faces several potential construct validity threats.
When investigating the impact of LLMs on the LOC metric, we use the
cloc tool to measure LOC. However, this tool itself may introduce bias.
To reduce the effect of the tool, we use the same tool the company uses.
During the process of collecting software metrics, we apply the Rapid
Review method, which could have caused us to overlook some relevant
literature and metrics. However, the results from our final migration
plan show that the existing solutions help the company reduce the
issues in software metrics, which reduces this threat. Another issue
is that we use tools like SonarQube to collect software metrics, and
these metrics could be affected by the tools themselves. To assess the
reliability of static analysis, we use bug-fixing commits and the SZZ
algorithm to detect bug-introducing commits. However, this algorithm
has limitations, such as false positives and false negatives, which can
introduce noise and affect the accuracy of our conclusions about the
effectiveness of static analysis.

6.3.2. Conclusion validity

In our case study, we only select a small number of examples that
are most relevant to the research questions, which may mean we miss
other important cases. Also, when studying the impact of LLMs on
LOC, we collect only 50 samples, which could affect the validity of
our conclusions. However, this sample size is large enough to show
that developers can intentionally increase their LOC scores by using
LLMs. Due to our use of the Rapid Review method to collect relevant
literature, we do not include databases such as Scopus and restricted
our search to specific sources. This limitation may have some impact on
the completeness of our conclusions. To mitigate this effect, we employ
the snowballing technique to supplement additional literature.

6.3.3. Internal validity

The assessment of simple and complex code metrics’ performance
relies on an open-source dataset sourced from the primary authors.
While reproduction efforts confirm initial findings, the basis for vari-
ations among metrics remains unclear, posing a substantial internal
validity challenge due to unresolved causality.

6.3.4. External validity

A possible issue is that we focus only on single-language Java
projects. While this approach ensures consistency, it may limit how
well our results apply to other programming languages. Additionally,
our conclusions are based on data from a single company, which
means our recommendations for software metric migration might not
be applicable to other companies. Furthermore, due to the lower quality
of industry repositories, we only select nine open-source projects for
the experiment, which might not apply to other types of projects. In
future research, we plan to explore how software metrics are used in
repositories that have returned to normal development modes within
the company.

7. Conclusion

As software product metrics play an increasingly central role in as-
sessing developers’ output, understanding their usage patterns becomes
critical for ensuring fair, efficient, and practical assessments. Through a
series of empirical studies, this work reveals key challenges in the cur-
rent usage patterns of software product metrics. First, we demonstrate
that developers can intentionally manipulate the LOC metric with the
assistance of LLMs, resulting in inflated output scores. Second, we show
that complex efficiency metrics do not consistently outperform simpler
ones across all projects and often incur substantial costs, calling their
practicality into question. Third, we find that widely used quality met-
rics derived from static analysis tools, such as those from SonarQube
and PMD, fail to accurately reflect developers’ contributions to software
quality, especially during defect-fixing activities.
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To validate and extend these findings, we collaborate with a large
financial institution to examine how existing software product met-
rics influence developers’ output assessments in practice. Our work
helps the company redesign its assessment scheme by introducing cost-
effective and more reliable metrics while limiting the inappropriate
use of existing tools. The adopted migration plan significantly reduces
output score anomalies within five months, demonstrating the practical
value of our empirical insights.

Future research will focus on: (1) finding ways to measure devel-
opers’ output in LLM-assisted development, (2) identifying developer
behavior patterns that cause metric anomalies using machine learn-
ing techniques and (3) validating metrics and conclusions in industry
settings with normal commit behaviors.
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