
Information and Software Technology 143 (2022) 106761

Available online 23 November 2021

Summarizing source code with hierarchical code representation

Ziyi Zhou , Huiqun Yu *, Guisheng Fan , Zijie Huang , Xingguang Yang
Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai, China

A R T I C L E I N F O

Keywords:
Code summarization
Program comprehension
Deep learning
Hierarchical attention

A B S T R A C T

Context: Code summarization aims to automatically generate natural language descriptions for code, and has
become a rapidly expanding research area. Data-driven code summarization models based on neural networks
have proliferated in recent few years.
Objective: Almost all of existing neural models are built upon the granularity of token or AST node. This has
several drawbacks: a) Code summarization requires high-level knowledge of code while token representations
are limited to provide a global view; b) Such approaches can hardly model the hierarchy of code; c) Long input
codes challenge such models to handle long-range dependencies due to the large number of tokens and AST
nodes.
Method: To address these issues, we propose a novel framework to utilize hierarchical representation of code to
generate better summaries. We consider two levels of code hierarchy: token-level and statement-level. Our
framework contains a pair of customized encoder-decoder models for tokens and AST of code respectively. Each
of them has a hierarchical encoder that aims to extract both token and statement-level code features, and an
attentional decoder with the ability to attend to those different levels of representation during decoding. They are
then combined to predict summaries via ensemble learning.
Results: We conduct extensive experiments to evaluate our models on a large Java corpus. The experimental
results show that our approach outperforms several state-of-the-art baselines by a substantial margin.
Conclusion: In conclusion, our approach could better learn global information of code and shift attention between
important statements during summary generation. With the help of hierarchical attention, the models are able to
locate keywords more accurately in a top-down way. Ensemble learning is also proved to be an effective way to
benefit from multiple input sources.

1. Introduction

Research has shown that developers spend more than half of their
time on program comprehension activities during software development
and maintenance [1]. It is essential to provide high-level natural lan
guage descriptions of code for developers because such summaries allow
them to understand a program more easily without digging into what it
does or how it works. High-quality code summaries, in the forms of
comments or documents etc., can not only help developers to compre
hend programs [2], but also benefit important tasks like code search [3,
21, 22, 24] and code categorization [30]. With the increasing scale and
complexity of software, code summaries play a crucial role in the life
cycle of software development and maintenance. However, document
ing or commenting source code is labor-intensive. In fact, code sum
maries are often missing, outmoded or even misleading due to the lack of
time and energy of developers.

Code summarization aims to automatically generate natural lan
guage descriptions for code, and has become a rapidly expanding
research area in the past decades. At first, code summarization models
are mainly based on heuristics, templates and information retrieval (IR)
[2–6]. Inspired by the advance of deep learning in natural language
processing, data-driven models that based on neural networks have
proliferated in recent few years [8–25]. These models mainly refer to the
attentional encoder-decoder (also called Seq2Seq) framework of neural
machine translation (NMT) [26–29], where the encoder works as a
component for program comprehension and provides a continuous
representation of code, which is then feed to the decoder for summary
generation. Generally, a code snippet can be treated as a token sequence
like a natural language sentence, then recurrent neural network (RNN)
[22–24], or convolutional neural network (CNN) [9] could be applied
directly.

While simply applying NMT has its limit because source code is

* Corresponding author.
E-mail addresses: zhouziyi@mail.ecust.edu.cn (Z. Zhou), yhq@ecust.edu.cn (H. Yu), yhq@ecust.edu.cn (X. Yang).

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

https://doi.org/10.1016/j.infsof.2021.106761
Received 21 March 2021; Received in revised form 10 August 2021; Accepted 26 October 2021

mailto:zhouziyi@mail.ecust.edu.cn
mailto:yhq@ecust.edu.cn
mailto:yhq@ecust.edu.cn
www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2021.106761
https://doi.org/10.1016/j.infsof.2021.106761
https://doi.org/10.1016/j.infsof.2021.106761
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2021.106761&domain=pdf
escapar
Rectangle

Information and Software Technology 143 (2022) 106761

2

highly structured and contains a lot of interacting components
compared with natural language. Recent studies are beginning to
recognize this issue, and thus construct code representation from
different sources including abstract syntax tree (AST) [13-15, 17-20]
and control flow graph (CFG) [19, 25]. Neural code summarization
models vary in their ways to encode structural inputs, e.g., by using
recursive neural network (Tree-RNN) [13, 17], graph neural network
(GNN) [18–20], or applying Seq2Seq on the flattened node sequence
[10, 11, 14].

The observation is that almost all of existing neural models are based
on the granularity of token or AST node, or more specifically, obtain
token or node feature vectors from the encoder and let the decoder to use
these vectors for summary generation. However, this has several
drawbacks: a) Intuitively, the task of code summarization requires high-
level knowledge of code while token representations are limited to
provide a global view; b) Such approaches can hardly model the hier
archy of code, such as token→statement→block→method (“→” denotes
“forms”); c) When it comes to long code snippets, there will be a lot of
tokens and AST nodes, causing larger size of input, which challenges the
model to handle long-range dependencies especially for graph and tree-
based models. These can directly influence the quality of generated
summaries.

To address these issues, we propose a novel framework to leverage
hierarchical representation of code to generate better summaries. In this
work, we consider the hierarchy of token→statement→code. This fol
lows the natural behavior of human participants to summarize a code
snippet: scan the code firstly to locate key statements such as method
header, API invocations and control flows, and then gather more specific
information within these statements, e.g. identifiers and strings, to give
a brief description. A branch of early studies has designed techniques to
simulate this process [2, 4], which select core statements using heuris
tics and then translate them into natural language via templates. We
further extend this idea into the language of deep learning. In our
framework, token sequence and AST of input code are split by statement,
and then fed into a pair of customized encoder-decoder models. Each
encoder-decoder model is equipped with a hierarchical encoder that
aims to extract both token (node) and statement-level code features, and
an attentional decoder with the ability to attend to those different levels
of representation during decoding. Our design of encoder refers to the
Hierarchical Attention Network (HAN) for document classification [31],
though with some modifications. Finally, these two models are com
bined to predict summaries via ensemble learning.

We evaluate our models on a filtered large Java corpus from previous
studies [10, 16, 17]. The experimental results show that our approach
significantly outperforms several state-of-the-art baselines on various
metrics. Moreover, we discuss and explain why our approach to hier
archical code representation performs better than traditional token or
AST-node-based models.

2. Background and related work

2.1. Neural code summarization

Early approaches to code summarization are mainly based on IR
algorithms [3, 5], rules [2, 4, 6], statistical language models [7] and
statistical machine translation [41]. While most of recent studies are
data-driven and turn to deep learning techniques, utilizing neural net
works to represent source codes. We broadly divide them into three
categories: single-source models, multi-source models and models based
on multi-task learning.

Single-source models utilize only one type of information to generate
code summaries. Iyer et al. [8] use an RNN with attention to produce
summaries directly from token embeddings. Allamanis et al. [9] design a
convolutional attention network to extract features from token se
quences to generate function name-like summaries. Structural infor
mation from AST is also be considered. Hu et al. [10] customize a

traversal method called SBT to serialize ASTs and then apply a standard
Seq2Seq model. Alon et al. [11] represent code as a set of AST paths and
encode them via RNN, and use attention to select relevant paths while
decoding. In [12], the authors propose a retrieval-based neural code
summarization approach, where they enhance the neural model with the
most similar code snippets retrieved from the training set.

Multi-source models utilize multiple types of information to improve
code summarization. This can be done using multiple code encoders or
combining different information into one input. Wan et al. [13] employ
a Tree-RNN to model AST and an RNN to represent sequential content of
code, and then integrate their context vectors to generate summaries.
They also exploit reinforcement learning to cope with exposure bias.
LeClair et al. [14] and Hu et al. [15] have the same intention: combining
the contexts of SBT and token sequence of code to generate summaries.
Hu et al. [16] leverage transfer knowledge of API by taking API sequence
as an additional input. To better leverage both lexical and syntactical
information, Zhou et al. [17] propose a CNN to extract vector repre
sentation of AST node and a mechanism to learn an adaptive weight
vector for different code representations. Similar to [12], Wei et al. [42]
also use retrieved samples to improve this task. Except for the retrieved
similar code snippet, they further leverage its AST and paired comment
(called exemplar). There are also increased research interests on the
application of GNN. Fernandes et al. [18] construct a graph represen
tation of code using AST and lexical information, and apply a GNN to
encode it. They combine the sequential information into GNN by
initializing a node in the graph with the corresponding output of an
RNN. Liu et al. [19] take this idea a step further: combine diverse rep
resentations of the source code including AST, CFG and program de
pendency graph (PDG) into a joint code property graph to produce
summaries. Similar to their previous work [14], LeClair et al. [20] use a
GNN for the AST as a separate input for token sequence.

Different code-related tasks could share their knowledge to improve
them jointly. Chen et al. [21] propose a Bimodal Variational Auto
Encoder to project natural language and code into a common semantic
space, which could be used for both code retrieval and summarization
tasks. In [22], the authors investigate a novel perspective of code
annotation for code retrieval, where a code annotation model is trained
to generate code summaries that can be leveraged by a code retrieval
model to better distinguish relevant codes. Wei et al. [23] design a dual
learning framework to train a code summarization and a code genera
tion model simultaneously to exploit the duality of them. Ye et al. [24]
also leverage code generation via dual learning, but improve both code
summarization and retrieval.

We noticed that a very recent study [25] also attempt to leverage the
hierarchical nature of code for this task, by applying vanilla HAN
together with multi-inputs and reinforcement learning. However, there
are differences between [25] and this work. First of all, we design
mechanisms to enable the decoder to attend to the hierarchical repre
sentation of code, while their model does not have such dynamic, i.e.
their decoder has no attention over inputs. Actually, we found their
application of HAN fails to improve a standard Seq2Seq model, as shown
in our Secion V (also can be observed from their experimental results).
On the other hand, the authors of [25] do not specify how they split the
AST for hierarchical input while we elaborate our data processing. Note
that different forms of input could greatly affect the performance.
Another major difference is that we explore the technique of ensemble
learning to benefit from multiple inputs.

2.2. Attentional encoder-decoder framework

Neural code summarization models apply NMT techniques to trans
late source code to natural language. A basic NMT system follows the
attentional encoder-decoder framework. The encoder maps a sequence
of input vectors x = (x1, …, xn) to a continuous representation h = (h1,
…, hn). Commonly, an RNN such as long short-term memory (LSTM)
[32] and gated recurrent units (GRU) [33] can be used as the encoder:

Z. Zhou et al.

Information and Software Technology 143 (2022) 106761

3

ht = fenc(xt, ht− 1) (1)

where fenc denotes an RNN function. In order to capture structural in
formation of codes, Tree-RNNs or GNNs can also be applied [17–20].
The decoder is a unidirectional RNN which uses h and its previous
outputs to predict a desired target sequence y = (y1, …, ym) one element
at a time. The conditional probability of generating next token yt is

p(yt|y<t, x) = softmax(g(st, ct)),

st = fdec(st− 1, yt− 1, ct− 1)
(2)

where g is a parametric function for probability estimation, fdec is a
decoder function, st is a decoding state and ct is a context vector
computed by the attention mechanism [28]. Attention aims to select
important parts from input sequence by assigning different weights to
elements in h at each decoding time step t.

NMT models as well as neural code summarization models are
traditionally trained via maximum likelihood estimation (MLE).
Namely, the goal is to maximize the objective

J =
1
N

∑N

i=1

∑Ti

t=1
logp

(
yi

t

⃒
⃒yi

<t, x
i) (3)

where N is the number of training sentence pairs, (xi, yi) is the i-th pair
and Ti is the length of the i-th target sequence yi.

3. Proposed approach

We provide details of our approach in this section, including the
hierarchical code encoder, attention mechanism and data processing.
Fig. 1 shows the overall workflow (during prediction) of our final model.
It consists of two independent encoder-decoder models that receive
token sequences and AST node sequences split by statement respec
tively, called summarizer (token) and summarizer (AST). Each of them
has a hierarchical encoder to better model code structure and a decoder
with the ability to reference the learned different levels of code repre
sentation. The final model is an ensemble of them, i.e., their predicted
probability of target words at each time step are combined during
inference.

3.1. Splitting code and its AST

We split the code and its AST by the granularity of statement and feed
statement sequences into both of the summarizers.

It is conventional to write one statement per line while the styles of
braces (Java for example) and complex expressions may vary. Another
concern is that directly split the code by lines can lose some structural
information such as nesting. Therefore, we first cancel the breaks in long
statements, add braces to unbraced one-line conditional statements, and
then format the code according to Allman style. These can be done using
a code formatter. After that, we split the code by lines to obtain state
ment sequence. Each statement is then split into a token sequence. The
identifiers and strings are further split into subtokens according to
snack_case and camelCase. A single brace (“{” or “}”) is treated as a
special statement to indicate the beginning or end of a block in the

statement sequence.
Syntactical information has been shown to be helpful to this task [11,

13-15, 17-20], so we also encode ASTs in a hierarchical manner. Split
ting an AST on statement level is trickier than a raw code snippet. We
traverse the AST in preorder to determine which statement a node
should belong to. If a node has a child named block (e.g. WhileStatement
and ForStatement) or body (e.g. MethodDeclaration and ClassDeclaration),
it will lead a group of nested statements. It is also the root of a statement
such as a method header, so its descendants excluding the ones in its
block or body will first be collected as a statement subtree. The (direct)
children of its block or body node are the roots of its following nested
statements. For each of these children, if it also contains block or body,
then it is treated like before. Otherwise, it will be included in a new
subtree together with its all descendants. Sequence of statement subtrees
can be obtained accordingly. Since we use preorder traversal, these
subtrees appear in the same order as their corresponding statements in
the code. We use preorder node sequence to represent a subtree. Note
that a terminal AST node has a value field that is a token somewhere in
the code, and could contain rich semantics. Similarly, we further split
the token if it is an identifier or string, and then treat the subtokens as
the children of this node. The order of these subtokens is kept during
traversal. Fig. 2 shows a method and the node sequences of its state
ments. Algorithm 1 illustrates the pseudocode to get the input of sum
marizer (AST), where GetTokens will return a sequence of subtokens
including a node’s type and split value (if exists).

3.2. Hierarchical encoder

The hierarchical encoder consists of a token encoder, a statement
encoder and a token-level intra attention layer, as illustrated in Fig. 3.
The token sequence xi = (xi1, xi2, …, xil) of the i-th statement will first be
mapped to a sequence of embedding vectors using a learnable embed
ding lookup matrix. Then a bi-directional LSTM (biLSTM), i.e., the token
encoder, is applied to encode it into a continuous representation htok

i =

(htok
i1 ,htok

i2 ,…,htok
il), where each of its element htok

ij is the concatenation of

the forward LSTM state h
→tok

ij and the backward one h
←tok

ij . Considering

Fig. 1. Overall workflow of our approach.

Fig. 2. A formatted code snippet with its AST node sequences split by state
ment. Subtokens within node sequence are in italics.

Z. Zhou et al.

Information and Software Technology 143 (2022) 106761

4

that not all tokens contribute equally to the representation of a state
ment, we use an attention mechanism similar to [31] to extract impor
tant parts and aggregate the low-level representation to a statement
vector ki. Since the decoder also has its attention mechanism, we call this
attention layer “intra attention” to distinguish them. Specifically,

uij = tanh
(

Wuhtok
ij + bu

)

αij =
exp

(
uT

ij ux

)

∑l

j=1
exp

(
uT

ij ux

)

ki =
∑l

j=1
αijhtok

ij

(4)

where Wu and bu are parameter matrix and bias, αij is the normalized
importance weight of xij, and ux is a jointly learned context vector which
can be seen as a high-level representation used for token selection. We
randomly initialize ux following [31].

The statement vector ki is a summary of tokens xi, but without in
formation from context around the i-th statement, i.e., other statements
in the code. So we use another biLSTM, called statement encoder, to
encode statement sequence k = (k1, k2, …, kL) into hstat = (hstat

1 ,hstat
2 ,…,

hstat
L). Different from [31], no intra attention is applied to hstat because in

our case, it is up to the decoder to extract information from different

granularity of code representation for summary generation.

3.3. Attentional decoder

The decoder is a unidirectional LSTM. Its initial state is the backward

final state of the statement encoder, i.e., s0 = h
←stat

L . Actually, h
←stat

L could
only roughly represent the input code. So we make the decoder to attend
to both token-level and statement-level representations of each state
ment, i.e., ki and hstat

i , at each decoding time step t. Specifically, we use
their concatenation pi = [ki; hstat

i] as both key and value element of the
attention mechanism:

pi =
[
ki; hstat

i

]

βi =
exp

(
sT

t Wapj
)

∑L

j=1
exp

(
sT

t Wapj
)

ct =
∑L

i=1
βipi

(5)

where Wa is the parameter matrix of the multiplicative attention [28] to
improve the interaction between two vectors, ct is the attentional
context vector at step t. Then we use ct to compute the conditional
probability of generating a target token yt:

p(yt|y<t, x) = softmax(Wsc̃t)

c̃t = tanh(Wc[ct; st] + bc)
(6)

where Ws, Wc and bc are trainable parameters. The above process is also
shown in Fig. 3, and we call (5) decoder attention.

Motivation behind aggregating pi. Besides the code encoder, the
most important part of our task is summary generation, so let the
decoder to perform fine-grained information selection from encoding
results is intuitive. With the cooperation of intra attention and decoder
attention, both levels of encoding result htok and hstat can be efficiently
evaluated by the decoder:

Algorithm 1.
Constructing input for summarizer (AST).

Input: AST with root R
Output: Sequence of statement subtrees
1: Initialize subtreeSeq
2: def Traversal(node, subtreeSeq):
3: Initialize nodeSeq
4: If node has block or body:
5: Take block or body apart from its children
6: For n in PreOrder(node):
7: nodeSeq.extend(GetTokens(n))
8: subtreeSeq.append(nodeSeq)
9: If node has block or body:
10: For child in its block or body:
11: Traversal(child, subtreeSeq)
12: Traversal(R, subtreeSeq)

Fig. 3. Hierarchical encoder-decoder architecture.

Z. Zhou et al.

Information and Software Technology 143 (2022) 106761

5

ct =
∑L

i=1
βipi =

∑L

i=1

[
βiki; βihstat

i

]

=

[
∑L

i=1

∑l

j=1
αijβih

tok
ij ;

∑L

i=1
βih

stat
i

] (7)

where αijβi can be considered as a refined normalized weight over all
tokens in the code. Despite that the values of αijβi can be biased due to
the variable lengths of the statements, they enable the model to refer to
the token representation of code indirectly while also utilizing the
higher-level representation through hstat.

Ensemble Decoding. The summarizers share the same topology and
are trained separately. In order to combine them to benefit from both
input types, we simply average their output probability vectors at each
step, and feed the currently chosen target word back to both of them as
inputs at next step.

4. Experimental setup

4.1. Dataset

The dataset we use for model evaluation is originally provided by Hu
et al. [10, 16] and processed by Zhou et al. [17]. It contains over 513K
pairs of Java method and comment collected from GitHub. Zhou et al.
have removed the duplicate pairs and carefully filtered the dataset for
code summarization task. In particular, they removed a lot of redundant
content that are hard to generated by models from the comments such as
HTML labels, “TODO: …” and URLs, and also split the identifiers in the
comments into subtokens. For better memory efficiency and evaluation,
we limit the length of comments to 3 to 30 subtokens and the length of
codes to less than 400 (longer inputs are truncated). We use the same
data partition as [17] for model training, validating and testing. Jav
alang1 is applied to tokenize the codes and parse them to ASTs.

4.2. Training and inference settings

The hidden size of the LSTMs in our model is set to 256. We use 128-
dimensional (sub)token embeddings for both encoders and decoders. To
efficiently guide the token and node-level encoders, we pretrain them
using a pair of vanilla Seq2Seq models. We find this improves both the
results and convergence speed of the hierarchical model. Other param
eters are initialized using Glorot initialization [34]. We limit the vo
cabulary sizes of codes, ASTs and comments to 30K, 31K and 25K,
respectively.

We optimize the training objective (3) using Adam [35] with initial
learning rate of 0.001. The batch size is set to 45 for both of the sum
marizers. We clip gradient norm by 5, and apply dropout [36] of 0.3 on
embedding vectors and the recurrent units. We use early stop to prevent
the models from overfitting. Specifically, we stop training when the
perplexity2 recorded on the validation set does not improve within 4
epochs and select the model with best validating BLEU score [37]. Beam
search [29] is used during validating and testing, with the beam size and
length penalty set to 4 and 0.4. The code for the whole workflow of our
model is available on GitHub3.

4.3. Baselines

We compare our approach with five deep learning based code sum
marization models from previous work, which take various types of
information as their inputs:

DeepCom [10] uses a special traversal method named SBT to

linearize AST into node sequence, and then a standard Seq2Seq model is
applied to translate the node sequence into natural language summary.
Since we also use traversal to derive node sequences, DeepCom is chosen
to be a baseline.

code2seq [11] represents code as a set of AST paths and encode
them via biLSTM. Then a decoder with attention to select the relevant
paths is used for sequence generation. AST paths can be seen as another
split method of AST compared to subtrees, so we examine this model in
our experiment.

CNN-TreeLSTM is another recent AST-based model described in
[17]. It uses a CNN with different widths of kernels to extract informa
tion from each AST node, including its type and subtokens. The obtained
node feature vectors are then fed to a Tree-LSTM equipped with
self-attention to form a tree-level representation. The motivation of this
model is close to ours: design different modules to learn different
granularity of code features, i.e. lexical and structural.

ast-attendgru [14] is a typical model with multiple inputs, which
has one GRU encoder for token sequence of code and another one for its
flattened AST, i.e. SBT sequence. During decoding, the attentional
contexts of both inputs are fused to predict a target word. Similar
combination strategies can be found in [13, 15, 20].

HybridHANþRL [25] is the most relevant baseline to this work. It
applies three standard HAN encoder for code, AST and CFG respectively,
and then take the combined context vector as the decoder’s initial state.
Furthermore, it uses reinforcement learning for comment generation to
alleviate the exposure bias issue.

For comparison, all baselines use training and inference settings
similar to ours. In detail, they use the same embedding size and RNN
hidden size as ours, and benefit from beam search during prediction. We
also enhance DeepCom with a biLSTM encoder. Subtoken splitting is
applied to the inputs of baselines (except for SBT sequences because it
has its own logic to handle tokens). For HybridHAN+RL, we perform 10
epoches of reinforcement training after it early stopped on MLE objec
tive (3). To be fair, it also takes the well-organized inputs described in
Section 3.1. Furthermore, we also consider their approach to the hier
archical attention as variants of our model, and will be compared in
ablation study.

4.4. Evaluation metrics

We evaluate the quality of generated summaries using three auto
matic metrics: BLEU [37], ROUGE-L [38], and METEOR [40]. They are
widely-used in NMT and code summarization since they are close to
human assessment. All models are evaluated using the same script, and
these scores are reported in percentage.

BLEU. Given a generated sentence, BLEU calculates the weighted
geometric mean of n-gram precision on reference sentence for different
n, and brings brevity penalty to short predictions. It is calculated as

BP =

⎧
⎪⎨

⎪⎩

1 ifc > r

exp
(

1 −
r
c

)
ifc ≤ r

BLEU = BP⋅exp
(
∑N

n=1
wnlogpn

)
(8)

where pn is the co-occurrence rate of length n subsequences between
candidate and reference, c is the length of the candidate, r is the effective
reference sentence length, and BP refers to brevity penalty. We set wn =

0.25 and compute BLEU for N = 1, 2, 3, and 4. Considering that higher
order n-grams may not overlap, we evaluate both BLEU-4 with and
without NIST smoothing [39]. The smoothed BLEU-4 is denoted as
BLEU-4(s).

ROUGE-L. ROUGE-L computes the similarity between generated
summary and reference based on the length of longest common subse
quence. Giving a reference summary X of length r and a candidate

1 https://github.com/c2nes/javalang
2 https://en.wikipedia.org/wiki/Perplexity
3 https://github.com/zy-zhou/HACS-release

Z. Zhou et al.

Information and Software Technology 143 (2022) 106761

6

summary Y of length c, it is computed as

Rlcs =
LCS(X, Y)

r

Plcs =
LCS(X, Y)

c

Flcs =

(
1 + β2)RlcsPlcs

Rlcs + β2Plcs

(9)

where LCS calculates the length of the longest common subsequence of
two sequences. The parameter β is set to 1. One advantage of using LCS is
that it does not require consecutive matches but in-sequence matches
that reflect sentence level word order as n-grams.

METEOR. METEOR is an improvement of BLEU, which takes recall
into account and applies synonym matching. Based on the number of
mapped unigrams m found between the two sequences, it first calculates
unigram precision P = m / c and unigram recall R = m / r, and then
computes a parameterized harmonic mean of P and R

Fmean =
P⋅R

α⋅P + (1 − α)⋅R (10)

The sequence of matched unigrams between the two strings is
divided into the fewest possible number of chunks. The number of
chunks ch and the number of matches m are then used to calculate a
penalty for the final score

Pen = γ⋅
(

ch
m

)β

score = (1 − Pen)⋅Fmean

(11)

We use the optimized parameter settings for English target described
in [40]: α = 0.85, β = 0.2 and γ = 0.6. The implementations of BLEU and
ROUGE are from NLTK4.

5. Results and analysis

We present the experimental results and analysis by investigating the
following research questions:

RQ1. How does our proposed approach perform compared to the
baselines?
RQ2. To what extent can our models handle long-range de
pendencies within the code?
RQ3. What are the effects of different configurations of our models, i.
e. different variants of attention over code representation?
RQ4. How does the proposed approach perform in practice?

5.1. RQ1: overall performance against baselines

Table 1 shows the overall results achieved by our models and the
baselines. We call our approach HACS (Hierarchical Attentional Code
Summarizer), where HACS-AST, HACS-token and HACS-ensemble
denote the AST-based summarizer, token-based summarizer and the
ensemble model mentioned in Section 3.

We can see from the table that on most metrics, ast-attendgru is a
competitive model among the baselines. This is mainly because it uses
both information from token sequence and AST. Handling tokens is
crucial for code summarization since many keywords in the summary
could also appear in the source code. Feeding token sequence makes it
possible to directly copy tokens via attention. We will illustrate how this
works in our case in Section 6. Since HybridHAN+RL optimizes BLEU-4
during reinforcement training, it achieves higher BLEU scores. However,

it failed to obtain consistent improvements on other metrics against ast-
attendgru, despite that extra information from CFG is utilized. In effect,
such application of vanilla HAN has drawbacks in decoding process. We
will discuss this in Section 5.3. It is obvious that the combination of
multiple inputs can improve the quality of generated results, which is
why we introduce HACS-ensemble. CNN-TreeLSTM is a baseline with
great potential. Although it only takes AST as input, it achieves similar
BLEU-1 and BLEU-4 scores compared to ast-attendgru. This suggests that
there also contains rich lexical semantics within the syntax tree, so it is
reasonable to find effective ways to encode both information. code2seq
performs relatively worse than the above baselines. We assume the
reason is that code2seq only considers the relationship between paired
AST leaves (by encoding the paths) but less global knowledge, and its
encoding result is not as rich as the other two. The authors of DeepCom
concatenates the type and value of an AST leaf as a token within SBT
sequence, so it mainly focuses on structural information of AST. Since it
does not build subtoken embeddings, it obtains less lexical features than
others and thus gets lower results.

It is clear that either of our models outperforms all baselines on all
metrics by a certain gap. The individual summarizers within the
ensemble model already show their great capability. More specifically,
HACS-AST outperforms the best AST-based baseline, namely CNN-
TreeLSTM by 7.5% BLEU-4(s), 3.7% ROUGE-L and 5.2% METEOR. It
also gains about 1.6 BLEU-4 points compared to ast-attendgru. This in
dicates that our approach could better utilize both lexical and structural
features in AST. It is not surprising that HACS-token shows even better
scores than HACS-AST, because lexical knowledge could guide the
generation process more directly, as analyzed before. In essence, hier
archical inputs explicitly reflect the structure within the token sequence,
and our model has the ability to extract these different levels of features
during decoding. The best scores are achieved by HACS-ensemble,
showing that our combining method makes sense, and significantly
boost the performance of the individuals. HACS-ensemble outperforms
ast-attendgru by 17.2% BLEU-4(s), 6.8% ROUGE-L and 9.3% METEOR,
which is a considerable improvement under the similar 2-way input.

5.2. RQ2: effect of input lengths

The quality of generated summaries can vary when altering the
lengths of source code, because larger input size challenges the model to
capture long-range dependencies. To answer RQ2, we examine the
average testing ROUGE-L scores for different models with respect to
various code lengths, as shown in Fig. 4.

We can observe that the peak performance of all models achieves at
code lengths within 30 to 70 subtokens, and there is a natural downward
trend of the scores for longer codes. In particular, the AST-based base
lines get very low score at code lengths of 10. A possible reason is that
such short codes contain only a few AST nodes or paths so these models
have difficulty to obtain useful features from input, while lexical infor
mation could be more helpful in this case. At almost all code lengths, our
ensemble model keeps leading the baselines by a large gap, and also
obviously improves both HACS-AST and HACS-token. This indicates that
our approach is more robust for both short and long codes. It is inter
esting to compare the curves of ast-attendgru and HACS-AST. When
code length is within 230, they show close performance, but HACS-AST
scores higher when the code becomes longer, namely 240 to 350 sub
tokens. Thus, we can conclude that the higher overall score of HACS-AST
(Table 1) is due to its better performance on the long codes. HACS-token
outperforms HACS-AST for most lengths of code, indicating that it also
benefits from hierarchical representation. HACS decomposes input code
into short snippets and relieves the burden of the model from memo
rizing long sequences, so that the long-range dependencies within the
code could be better modeled through encoders of different levels.

4 http://www.nltk.org/

Z. Zhou et al.

Information and Software Technology 143 (2022) 106761

7

5.3. RQ3: ablation study

We conduct an ablation study to check the effectiveness of our pro
posed mechanisms. The following variants of our model are examined:

biLSTM-AST & biLSTM-token are standard attentional Seq2Seq
models, which encode token sequence and AST node sequence
respectively. They use biLSTM encoders and attentional LSTM de
coders. Their inputs are similar to HACS but are not split by
statement.
HAN-AST & HAN-token are derived models from HybridHAN+RL,
using vanilla HAN (based on biLSTM) as their encoders but without
attention for their decoders. To be specific, the top output vector of
HAN is used to initialize the decoder. Similarly, they use the inputs
described in Section 3.1.
HACS-AST* & HACS-token* let the decoders to attend to the higher-
level encoding results hstat instead of both token and statement-level,
i.e., replacing pi in (4) using hstat

i . This is a simpler design of the
decoder attention.

Table 2 shows the results of these configurations. It is clear that HAN-
AST and HAN-token show the worst scores, and seriously degrade the
standard Seq2Seq baselines. Specifically, HAN-AST loses 11.1% BLEU-4,
9.2% ROUGE-L and 10.4% METEOR from biLSTM-AST, while HAN-
token loses 8.1%, 7.5% and 8.5% of those from biLSTM-token. The
reason is that for each of these models, only a single encoding vector is
utilized by the decoder, and its ability of information selection and token
copy is lost. In other words, the attention weights calculated by HAN are
fixed throughout the generation process. As described in Section 1, HAN
is originally designed for text classification and does not aim to guide a
text generation task, while code summarization relies more on the de
tails and lexical resources in the input than classification. Therefore,
simple application of vanilla HAN as in [25] is not practical for its larger
model size and worse performance. HACS-AST* and HACS-token* score
better than the above two but are still not as competitive as standard
Seq2Seqs, despite that they have already equipped with the decoder

attention. As seen, HACS-AST* shows slightly lower results than
biLSTM-AST on all metrics, and HACS-token* only achieves better BLEU
scores. By contrast, our models consistently outperform the others on all
metrics, which proves the effectiveness of our approach. This again
suggests that utilizing only high-level code representations is not enough
for the models to produce good summaries, while the reference to the
tokens is preferred.

5.4. RQ4: human evaluation

Although above automatic metrics could evaluate the generated
summaries objectively and quickly, they do not always agree with the
actual quality of the results. Therefore, we perform human studies to
evaluate the results from HACS and baselines. Following [8, 15], we
consider two aspects of the generated summaries:

Naturalness. Grammaticality and fluency of the generated com
ments. It is on a scale between 1 and 5. Specifically, 1 means the
result is totally not readable, 3 means the result contains a few
grammatical errors or repeated phrases but does not affect under
standing, and 5 means there is no grammatical error and the result is
as smooth as from human.
Informativeness. The amount of key content carried over from the
input code to the generated comments, ignoring fluency of the text).
It is also range from 1 to 5. Specifically, 1 means the result could not
reflect any functionality of the code snippet and is totally misleading,
3 means the result could cover the main functionality but loses the
details, and 5 means the result is able to summarize the code pre
cisely and no worse than the reference.

We invite 5 volunteers with rich Java development experience and
excellent English level to rate the generated summaries according to the
above two aspects. They are either developers or Ph.D. students of
computer science (CS). Their background information is shown in
Table 3. We randomly choose 150 code snippets from the test set, and
then equally divide them among the volunteers. We make a

Table 1
Overall performance compared to baselines.

Model BLEU-1/2/3/4 BLEU-4(s)a ROUGE-L METEOR

DeepCom 28.62 19.99 15.00 11.32 18.18 36.92 17.93
code2seq 32.88 22.72 16.68 12.69 20.29 42.77 20.85
CNN-TreeLSTM 34.95 25.06 18.59 13.82 22.01 45.66 22.11
ast-attendgru 34.94 25.56 18.89 13.79 22.24 46.70 22.51
HybridHAN+RL 34.60 25.22 19.39 14.91 22.71 44.69 21.74
HACS-AST 36.96 27.05 20.36 15.42 23.66 47.33 23.25
HACS-token 37.94 28.24 21.63 16.50 24.80 48.40 23.87
HACS-ensemble 39.06 29.61 22.96 17.67 26.07 49.87 24.60

BLEU-4(s) denotes the smoothed BLEU-4.

Fig. 4. ROUGE-L scores for different code lengths.

Z. Zhou et al.

Information and Software Technology 143 (2022) 106761

8

questionnaire for each participant. In detail, the comments generated by
different approaches (the models in Table 1) are evaluated together for
each snippet. The ground truth is also presented to the participants for
reference, but they do not know which model a certain result is gener
ated from.

The evaluation results are shown in Table 4. As seen from the table,
all models are able to generate fluent summaries, and achieve close
scores on naturalness. This is mainly due to their same beam search
settings. However, the difference in their scores of informativeness is
obvious. HACS surpasses all baselines in terms of informativeness,
which means that it is able to generate more relevant and accurate
summaries than others. Through the feedback from volunteers, we find
that when the references contain information outside the given code
snippet, the models always fail to generate such contents, e.g., the var
iable or method names appear in the context of class. We will try to
eliminate this limitation by including higher levels of code hierarchy in
future work.

6. Discussion

6.1. Case study and visualization

In this section, we show output examples and visualizations of our
models to discuss the effectiveness of attending to the hierarchical code
representation during decoding. We choose to compare with the outputs
of biLSTM-AST / token and HAN-AST / token because the comparison
against these models could provide a clearer view of the contribution of
our approach. The example codes and corresponding outputs are shown
in Table 5. We omit the outputs from HACS-ensemble since they match
the ones from HACS-token in these examples.

Although the method header of Example 1 implies its functionality,
but it requires the models to extract useful information from its body to
determine “what” contains the given value. Checking the results, we can
see that none of the baselines is able to predict the target word

“hashtable” while they can capture the word “value”. By contrast, HACS-
token and HACS-AST could produce matched summaries. In order to
find out why HACS generates better results, we visualize the (decoder)
attention weights of both HACS-AST and biLSTM-AST during decoding,
as shown in Fig. 5 (a) and Fig. 6 (a) respectively. In these figures, the
lighter the pixel, the bigger the weight at that position, and the special
token “</s>” denotes the end-of-sentence tag. We can see from Fig. 6
(a) that when predicting “value”, biLSTM-AST is exactly attending to the
“value” token in the code, indicating that it is able to perform token copy
with the help of attention. However, in its generated sequence, “map” is
less accurate than the target “hashtable”. When predicting this word, it
focuses mostly on the root node MethodDeclaration. In this row, a token
“tab” is also assigned little attention, but not enough to guide the model
to make good prediction. Fig. 5 (a) is the visualization of βi in (4), i.e.,
how HACS-AST locates important statement subtrees. When it predicts
“hashtable”, it is attending to three statements: two for statements and
the nested if statements. From the source code we can find that the user-
defined variables “tab” and “e” within these statements is associated
with “table”. Taking a closer look at the subtrees of two for statements,
we find that the intra-attention weights αij for the “tab” tokens are up to
0.18 and 0.14 respectively, which are much larger than other tokens.
Since we force the decoder to attend to both token-level and statement-
level encoding results, the signal from the token “tab” should be
detected by the decoder, and then it could predict the most likely next
word is “hashtable” via the learned embedding matrix. It is interesting
that a closer term “table” also appears in an assignment statement (line
5), but the model does not focus on it. Note that this does not mean the
model cannot see the assignment because each output from biLSTM
provides the memory of surrounding contexts. This indicates that at this
step, HACS-AST decides the control flows are more important to sum
marize the code, which is exactly a right decision because they imple
ment the core functionality of the given code snippet. Comparing Fig. 5
(a) and Fig. 6 (a), we can see that HACS-AST is able to attend to various
important statements during generation while the attention of biLSTM-
AST is always stuck to a small area. This means the former could better
capture the global structural information of AST, with the fine-grained
token representations retained.

Example 2 shows a longer code snippet. The main difference between
the models is whether they can predict the target word “cookie”. As
seen, only HAN-token and our models could do this. Since the token
“cookie” appears in the code, we choose to visualize the attention of
biLSTM-token and HACS-token this time, as shown in Fig. 5 (b) and
Fig. 6 (b). From Fig. 6 (b), we can find that biLSTM-token is good at copy
tokens. Namely, it pays much attention to the method header through
the decoding process and directly uses the tokens “json”, “object” and
“string” within that line. However, it does not consider “cookie” is an
important source token which is far from the location it focuses on. We
attribute this to its limited capability to handle long input. On contrary,
the statement attention of HACS-token covers more critical parts of the
input. To be specific, when generating the word “cookie” that missed by
biLSTM-token, our model is focusing on line 13 and 15, which is exactly
where “cookie” appears. Going deeper, we find that the token “cookie” is
assigned the largest intra-attention weight in both of these two state
ments, of 0.31 and 0.23 respectively. Thus, the model knows this token

Table 2
Results of different variations of our model.

Model BLEU-1/2/3/4 BLEU-4(s) ROUGE-L METEOR

biLSTM-AST 35.32 25.92 19.31 14.36 22.70 46.86 22.94
HAN-AST 32.10 22.42 16.54 12.39 20.18 42.53 20.56
HACS-AST* 35.15 25.32 18.84 14.08 22.34 46.06 22.39
HACS-AST 36.96 27.05 20.36 15.42 23.66 47.33 23.25
biLSTM-token 35.85 26.39 19.79 14.73 23.07 47.33 23.16
HAN-token 33.28 23.59 17.57 13.25 21.21 43.79 21.18
HACS-token* 36.15 26.45 19.97 15.08 23.44 47.31 22.97
HACS-token 37.94 28.24 21.63 16.50 24.80 48.40 23.87

Table 3
Backgrounds of the participants.

ID Programming Experience Java Experience Occupation

1 9 years 2 years CS Ph.D. student
2 10 years 5 years Development Engineer
3 5 years 2 years Development Engineer
4 6 years 3 years CS Ph.D. student
5 6 years 5 years CS Ph.D. student

Table 4
Results of human evaluation.

Model Naturalness Informativeness

DeepCom 4.25 2.33
Code2Seq 4.21 2.59
TreeLSTM 4.23 2.63
ast-attendgru 4.31 2.81
HybridHAN+RL 4.29 2.72
HACS-ensemble 4.31 3.16

Z. Zhou et al.

Information and Software Technology 143 (2022) 106761

9

is currently important. Unlike biLSTM-token, HACS-token does not
simply refer to the method header when predicting the return value.
Instead, it turns to line 13, 15 and the return statement to generate
“cookie string”. In fact, these are important statements that directly
associated with the return value “sb”.

According to the visualizations, one of the advantages of HACS is
that it holds a global view of the code and is able to shift attention be
tween different statements in the generation process. Since the token-
based baselines focus mostly on local information and lack high-level
knowledge, they might have difficulty to locate keywords in long
codes. On the other hand, HACS also keeps the ability of traditional
attention, i.e. to copy specific tokens, despite that the process is indirect

(as described in Section 3.3). Since HACS locates important tokens in a
hierarchical manner, the result can be more accurate. Example 3 and 4
are the cases that HACS copies more accurately than the baselines. In
example 3, only HACS-token could predict the correct action word
“find” which does not appear in the method signature. This suggests that
it further locates the token “found” in the following statements. The
method name of example 4 is quite ambiguous, which totally disturbs
biLSTMs and HAN-token. By contrast, our models perform much better:
they are able to produce the summary of “send message”.

As seen in Table 5, HAN-AST and HAN-token could sometimes pro
duce good summary, but many of their outputs are flawed. This suggests
that the representation from HAN could provide some useful features,

Table 5
Output examples of different models.

Source Code Example 1 Example 2
public synchronized boolean contains(Object value) {

if (value == null) {

throw new NullPointerException();

}

Entry[] tab=table;

for (int i=tab.length; i– > 0;) {

for (Entry e=tab[i]; e != null; e=e.next) {

if (e.value.equals(value)) {

return true;

}

}

}

return false;

}

public static String toString(JSONObject jo)

throws JSONException {

boolean b=false;

Iterator keys=jo.keys();

String string;

StringBuffer sb=new StringBuffer();

while (keys.hasNext()) {

string=keys.next().toString();

if (!jo.isNull(string)) {

if (b) {

sb.append(’;’);
}

sb.append(Cookie.escape(string));

sb.append("=");

sb.append(Cookie.escape(jo.getString(string)));

b=true;

}

}

return sb.toString();

}

Reference tests if some key maps into the specified value in this hashtable convert a json object into a cookie list
biLSTM-

token
returns true if this map contains the specified value convert json object to string

biLSTM-AST returns true if this map maps one or more keys to the specified value returns a string representation of the json object
HAN-token returns true if this map maps one or more keys to the specified value convert a json object into a cookie string
HAN-AST tests if the specified value is present convert a json string to a json string
HACS-token tests if some key maps to the specified value in this hashtable convert a json object to a cookie string
HACS-AST tests if some key maps to the specified value in this hashtable convert a json object into a cookie string
Source Code Example 3 Example 4

private static void innerListFiles(

Collection<File> files, File directory,

IOFileFilter filter,boolean includeSubDirectories)

{

File[] found=directory.listFiles((FileFilter)

filter);

if (found != null) {

for (File file: found) {

if (file.isDirectory()) {

if (includeSubDirectories) {

files.add(file);

}

innerListFiles(files,file,filter,

includeSubDirectories);

}

else {

files.add(file);

}

}

}

}

public void action() {

synchronized (myAgent) {

NGramDocumentComparatorAgent a=

(NGramDocumentComparatorAgent)myAgent;

ACLMessage msg=new ACLMessage(ACLMessage.INFORM);

msg.setSender(a.getAID());

msg.addReceiver(a.ResultConsumer);

try {

msg.setContentObject(Result);

}

catch (IOException ex) {

System.err.println("Cannot add result to message. Sending empty

message.");

ex.printStackTrace(System.err);

}

a.send(msg);

}

}

Reference finds files within a given directory (and optionally its
subdirectories)

actually sends the result to the dispatching agent

biLSTM-
token

recursively walks the files in the given directory filter performs the action

biLSTM-AST add files to files this method is called when the user selects an action
HAN-token lists the files in the given directory performs the action
HAN-AST scans the given files recursively this method sends a message to the server
HACS-token finds files in the given directory sends the message to the server
HACS-AST adds the given files to the given directory sends a message to the user

Z. Zhou et al.

Information and Software Technology 143 (2022) 106761

10

but the final model cannot make full use of them as HACS does. The
main reason is that the top-level feature vector of HAN is less informa
tive, and its paired decoder is not able to perform fine-grained feature
selection from input.

6.2. Time cost

To examine the time cost of different models, we record their speed
of transforming the test data under the same settings (batch size of 80,
enabling beam search), as shown in Table 6. We do not compare with
code2seq and HybridHAN+RL because they are implemented on
different platform to others. Although DeepCom and biLSTM-AST share
the same model architecture and both take flattened AST as input, we
can see that biLSTM-AST is 13% slower. This is due to the node sequence
input to biLSTM-AST contains many subtokens separated from the
leaves, which leads to longer encoding time. For the same reason, it is

also slower than CNN-TreeLSTM. biLSTM-token is the fastest baseline
for its simplest design and input. Since HACS includes extra code
encoder and more complex attention mechanisms, it seems like it will be
more time-consuming than standard Seq2Seq model. However, we can
see from Table 6 that HACS-AST / token are as fast as biLSTM-AST /
token. The reasons are as follows. First, despite that HACS has two levels
of encoder, each of them takes much shorter sequence: For any code
snippet, the input length for the token encoder is the number of tokens
(AST nodes) within the statement, and the input length for the statement
encoder is the number of statements within the code. In addition,
different statements can be encoded simultaneously by the token
encoder. Thus, the efficiency of HACS is still high. However, we can see
that HACS-ensemble is much slower than its dual-input counterpart, i.e.
ast-attendgru. One of the main reasons is that the GRU of ast-attendgru is
much faster than the biLSTM. On the other hand, since only a single GPU
is used for our experiments, we need to calculate the outputs of HACS-
AST and HACS-token sequentially to obtain the ensemble result.
Fortunately, the training and inference of the individuals within HACS-
ensemble is totally parallelizable, so the time cost can be significantly
reduced if assign them to multiple GPUs. Overall, our approach is
applicable.

6.3. Threats to validity

The major threat to validity of this work is the dataset we use. First of
all, the original datasets from [10, 16] are not classified by project and
there is no extra tag on each method, so we are not able to split our
filtered dataset by projects. This may cause information leakage from

Fig. 5. Visualizations of attention in HACS-AST and HACS-token.

Fig. 6. Visualizations of attention in biLSTM-AST and biLSTM-token.

Table 6
Inference time costs of different models.

Model Time (sec. / batch)

DeepCom 0.68
CNN-TreeLSTM 0.70
ast-attendgru 0.75
biLSTM-AST 0.77
biLSTM-token 0.66
HACS-AST 0.74
HACS-token 0.68
HACS-ensemble 1.01

Z. Zhou et al.

Information and Software Technology 143 (2022) 106761

11

training data to validating and testing data. Zhou et al. [17] alleviate this
threat by randomly shuffle the dataset to make sure that the data dis
tribution is close to uniform. In addition, only Java language is used to
evaluated our model. It is apparent that different programing languages
have different characteristics, which may affect the performance of
models. It is necessary to collect multi-language dataset with both
quality and size, and also interesting to check whether existing models
can be well generalized from one programming language to another.

For code2seq, we use the official implementation of the authors5.
During data preprocessing, we found that a small proportion (around
8%) of our data are dropped by its customized JavaExtractor. We assume
that it may fail to parse these codes or cannot extract enough AST paths
for the model to use. This leads to another threat to validity, which could
slightly affect the scores we calculated for code2seq.

7. Conclusion and future work

In this work, we propose a new encoder-decoder architecture for
code summarization, where the encoder extracts hierarchical represen
tations of code and the decoder makes good use of these features for
better summary generation. We utilize both inputs of token sequence
and AST via ensemble decoding. Detailed data processing including the
construction of inputs is provided. In conclusion, attending to hierar
chical representation of code could significantly improve the perfor
mance of neural models. Different from token or AST-node-based
models, our approach could better learn global information of code and
shift attention between important statements during summary genera
tion. With the cooperation of intra attention and decoder attention, they
are able to locate keywords more accurately in a top-down way. Also,
ensemble learning is proved to be a powerful way to benefit from mul
tiple input sources, and can be considered as an alternative to existing
combination strategies. For future work, more complex code hierarchies
need to be investigated. We will also try to extend our approach to
advanced input forms and neural networks such as GNNs and Tree-
RNNs.

CRediT authorship contribution statement

Ziyi Zhou: Conceptualization, Methodology, Software, Investiga
tion, Visualization, Writing – original draft. Huiqun Yu: Writing – re
view & editing, Supervision, Funding acquisition. Guisheng Fan:
Writing – review & editing. Zijie Huang: Investigation, Software.
Xingguang Yang: Investigation, Validation.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgment

This work was supported by the National Natural Science Foundation
of China (No. 61772200), Shanghai Natural Science Foundation (No.
21ZR1416300).

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.infsof.2021.106761.

References

[1] X. Xia, L. Bao, D. Lo, Z. Xing, A.E. Hassan, S. Li, Measuring program
comprehension: A large-scale field study with professionals, IEEE Trans. Softw.
Eng. 44 (10) (2018) 951–976.

[2] September 20-24, 2010 G. Sridhara, E. Hill, D. Muppaneni, L.L. Pollock, K.
Vijay Shanker, Towards automatically generating summary comments for java
methods, in: C. Pecheur, J. Andrews, E.D. Nitto (Eds.), ASE 2010, 25th IEEE/ACM
International Conference on Automated Software Engineering, Antwerp, Belgium,
ACM, 2010, pp. 43–52. September 20-24, 2010.

[3] S. Haiduc, J. Aponte, L. Moreno, A. Marcus, On the use of automated text
summarization techniques for summarizing source code, in: 17th Working
Conference on Reverse Engineering, WCRE 2010, 13-16 October 2010, Beverly,
MA, USA, G.Antoniol, M.Pinzger, and E. J.Chikofsky, IEEE Computer Society,
2010, pp. 35–44.

[4] G. Sridhara, L.L. Pollock, K. Vijay-Shanker, Automatically detecting and describing
high level actions within methods, in: R.N. Taylor, H.C. Gall, N. Medvidovic (Eds.),
Proceedings of the 33rd International Conference on Software Engineering, ICSE
2011, Waikiki, Honolulu, HI, USA, May 21-28, 2011, ACM, 2011, pp. 101–110.

[5] S. Haiduc, J. Aponte, A. Marcus, Supporting program comprehension with source
code summarization, in: J. Kramer, J. Bishop, P.T. Devanbu, S. Uchitel (Eds.),
Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - Volume 2, ICSE 2010, Cape Town, South Africa, 1-8 May 2010, ACM,
2010, pp. 223–226.

[6] P.W. McBurney, C. McMillan, Automatic source code summarization of context for
java methods, IEEE Trans. Softw. Eng. 42 (2) (2016) 103–119.

[7] D. Movshovitz-Attias, W.W. Cohen, Natural language models for predicting
programming comments, in: Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics, ACL 2013, 4-9 August 2013, Sofia,
Bulgaria, Short Papers. The Association for Computer Linguistics, 2013, pp. 35–40.
Volume 2.

[8] S. Iyer, I. Konstas, A. Cheung, L. Zettlemoyer, Summarizing source code using a
neural attention model, in: Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin,
Germany, Long Papers. The Association for Computer Linguistics, 2016. Volume 1.

[9] M. Allamanis, H. Peng, C. Sutton, A convolutional attention network for extreme
summarization of source code, in: M. Balcan, K.Q. Weinberger (Eds.), Proceedings
of the 33nd International Conference on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016, ser. JMLR Workshop and Conference Proceedings
48, JMLR.org, 2016, pp. 2091–2100.

[10] X. Hu, G. Li, X. Xia, D. Lo, Z. Jin, Deep code comment generation, in: F. Khomh, C.
K. Roy, J. Siegmund (Eds.), Proceedings of the 26th Conference on Program
Comprehension, ICPC 2018, Gothenburg, Sweden, May 27-28, 2018, ACM, 2018,
pp. 200–210.

[11] U. Alon, S. Brody, O. Levy, E. Yahav, code2seq: Generating sequences from
structured representations of code, in: 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.
OpenReview.net.

[12] J. Zhang, X. Wang, H. Zhang, H. Sun, X. Liu, Retrieval-based neural source code
summarization, in: G. Rothermel, D. Bae (Eds.), ICSE ’20: 42nd International
Conference on Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020,
ACM, 2020, pp. 1385–1397.

[13] Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu, P.S. Yu, Improving automatic
source code summarization via deep reinforcement learning, in: M. Huchard,
C. Kastner, G. Fraser (Eds.), Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ASE 2018, Montpellier, France,
September 3-7, 2018, ACM, 2018, pp. 397–407.

[14] A. LeClair, S. Jiang, C. McMillan, A neural model for generating natural language
summaries of program subroutines, in: J.M. Atlee, T. Bultan, J. Whittle (Eds.),
Proceedings of the 41st International Conference on Software Engineering, ICSE
2019, Montreal, QC, Canada, May 25-31, 2019, IEEE /ACM, 2019, pp. 795–806.

[15] X. Hu, G. Li, X. Xia, D. Lo, Z. Jin, Deep code comment generation with hybrid
lexical and syntactical information, Empir. Softw. Eng. 25 (3) (2020) 2179–2217.

[16] X. Hu, G. Li, X. Xia, D. Lo, S. Lu, Z. Jin, Summarizing source code with transferred
API knowledge, in: Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm,
Sweden, 2018, pp. 2269–2275. J. Lang, Ed. ijcai.org.

[17] Z. Zhou, H. Yu, G. Fan, Effective approaches to combining lexical and syntactical
information for code summarization, Softw. Pract. Exp. 50 (12) (2020) 2313–2336.

[18] P. Fernandes, M. Allamanis, M. Brockschmidt, Structured neural summarization,
in: 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019, 2019. OpenReview.net.

[19] S. Liu, Y. Chen, X. Xie, J.K. Siow, Y. Liu, Automatic code summarization via multi-
dimensional semantic fusing in GNN, in: CoRR, 2020 vol. abs/2006.05405.

[20] A. LeClair, S. Haque, L. Wu, C. McMillan, Improved code summarization via a
graph neural network, in: ICPC ’20: 28th International Conference on Program
Comprehension, Seoul, Republic of Korea, July 13-15, 2020, ACM, 2020,
pp. 184–195.

[21] Q. Chen, M. Zhou, A neural framework for retrieval and summarization of source
code, in: M. Huchard, C. Kastner, G. Fraser (Eds.), Proceedings of the 33rd ACM/
IEEE International Conference on Automated Software Engineering, ASE 2018,
Montpellier, France, September 3-7, 2018, ACM, 2018, pp. 826–831.

[22] Z. Yao, J.R. Peddamail, H. Sun, Coacor: Code annotation for code retrieval with
reinforcement learning, in: L. Liu, R.W. White, A. Mantrach, F. Silvestri, J.
J. McAuley, R. Baeza-Yates, L. Zia (Eds.), The World Wide Web Conference, WWW
2019, San Francisco, CA, USA, May 13-17, 2019, ACM, 2019, pp. 2203–2214. 5 https://github.com/tech-srl/code2seq

Z. Zhou et al.

https://doi.org/10.1016/j.infsof.2021.106761
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0001
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0001
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0001
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0002
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0002
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0002
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0002
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0002
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0003
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0003
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0003
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0003
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0003
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0004
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0004
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0004
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0004
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0005
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0005
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0005
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0005
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0005
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0006
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0006
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0007
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0007
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0007
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0007
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0007
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0008
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0008
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0008
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0008
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0009
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0009
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0009
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0009
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0009
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0010
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0010
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0010
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0010
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0011
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0011
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0011
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0011
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0012
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0012
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0012
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0012
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0013
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0013
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0013
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0013
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0013
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0014
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0014
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0014
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0014
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0015
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0015
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0016
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0016
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0016
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0016
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0017
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0017
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0018
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0018
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0018
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0019
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0019
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0020
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0020
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0020
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0020
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0021
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0021
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0021
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0021
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0022
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0022
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0022
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0022

Information and Software Technology 143 (2022) 106761

12

[23] B. Wei, G. Li, X. Xia, Z. Fu, Z. Jin, Code generation as a dual task of code
summarization, in: H.M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alche-Buc, E.
B. Fox, R. Garnett (Eds.), Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS2019,
December 8-14, 2019, Vancouver, BC, Canada, 2019, pp. 6559–6569.

[24] W. Ye, R. Xie, J. Zhang, T. Hu, X. Wang, S. Zhang, Leveraging code generation to
improve code retrieval and summarization via dual learning, in: Y. Huang, I. King,
T. Liu, M. van Steen (Eds.), WWW ’20: The Web Conference 2020, Taipei, Taiwan,
April 20-24, 2020, ACM, 2020, pp. 2309–2319. /IW3C2.

[25] W. Wang, Y. Zhang, Y. Sui, Y. Wan, Z. Zhao, J. Wu, P. Yu, G. Xu, Reinforcement-
learning-guided source code summarization via hierarchical attention, IEEE Trans.
Softw. Eng. (2020), 1–1.

[26] I. Sutskever, O. Vinyals, Q.V. Le, Sequence to sequence learning with neural
networks, in: Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, K.
Q. Weinberger (Eds.), Advances in Neural Information Processing Systems 27:
Annual Conference on Neural Information Processing Systems 2014, December 8-
13 2014, Montreal, Quebec, Canada, 2014, pp. 3104–3112.

[27] A meeting of SIGDAT, a Special Interest Group of the ACL K. Cho, B. van
Merrienboer, C¸. Gulc¸ehre, D. Bahdanau, F. Bougares, ̈ H. Schwenk, Y. Bengio,
Learning phrase representations using RNN encoder-decoder for statistical machine
translation, in: A. Moschitti, B. Pang, W. Daelemans (Eds.), Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing, EMNLP 2014,
October 25-29, 2014, Doha, Qatar, ACL, 2014, pp. 1724–1734. A meeting of
SIGDAT, a Special Interest Group of the ACL.

[28] T. Luong, H. Pham, C.D. Manning, Effective approaches to attention-based neural
machine translation, in: L. Marquez, ̀ C. Callison-Burch, J. Su, D. Pighin, Y. Marton
(Eds.), Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, The
Association for Computational Linguistics, 2015, pp. 1412–1421.

[29] Y. Wu, M. Schuster, Z. Chen, Q.V. Le, M. Norouzi, W. Macherey, et al., Google’s
neural machine translation system: Bridging the gap between human and machine
translation, in: CoRR, 2016 vol. abs/1609.08144.

[30] A.T. Nguyen, T.N. Nguyen, Automatic categorization with deep neural network for
open-source java projects, in: S. Uchitel, A. Orso, M.P. Robillard (Eds.),
Proceedings of the 39th International Conference on Software Engineering, ICSE
2017, Buenos Aires, Argentina, May 20-28, 2017 - Companion Volume, IEEE
Computer Society, 2017, pp. 164–166.

[31] Z. Yang, D. Yang, C. Dyer, X. He, A.J. Smola, E.H. Hovy, Hierarchical attention
networks for document classification, in: K. Knight, A. Nenkova, O. Rambow (Eds.),
NAACL HLT 2016, The 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, San
Diego California, USA, June 12-17, 2016, The Association for Computational
Linguistics, 2016, pp. 1480–1489.

[32] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural. Comput. 9 (8)
(1997) 1735–1780.

[33] K. Cho, B. van Merrienboer, D. Bahdanau, Y. Bengio, On the properties of neural
machine translation: Encoder-decoder approaches, in: D. Wu, M. Carpuat,
X. Carreras, E.M. Vecchi (Eds.), Proceedings of SSST@EMNLP 2014, Eighth
Workshop on Syntax, Semantics and Structure in Statistical Translation, Doha,
Qatar, 25 October 2014, Association for Computational Linguistics, 2014,
pp. 103–111.

[34] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward
neural networks, in: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia,
Italy, May 13-15, 2010, ser. JMLR Proceedings, Y. W.Tehand D. M. Titterington,
Eds., vol. 9. JMLR.org, 2010, pp. 249–256.

[35] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings, Y.Bengioand Y.LeCun, Eds,
2015.

[36] N. Srivastava, G.E. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout:
a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15
(1) (2014) 1929–1958.

[37] K. Papineni, S. Roukos, T. Ward, W. Zhu, Bleu: a method for automatic evaluation
of machine translation, in: Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, July 6-12, 2002, Philadelphia, PA, USA,
ACL, 2002, pp. 311–318.

[38] C.-Y. Lin, Rouge: a package for automatic evaluation of summaries, in: Workshop
on Text Summarization Branches Out, Post-Conference Workshop of ACL 2004,
Barcelona, Spain, July 2004.

[39] B. Chen, C. Cherry, A systematic comparison of smoothing techniques for sentence-
level BLEU, in: Proceedings of the Ninth Workshop on Statistical Machine
Translation, WMT@ACL 2014The Association for Computer Linguistics, June 26-
27, 2014, Baltimore, Maryland, USA, 2014, pp. 362–367.

[40] M. Denkowski, A. Lavie, Meteor universal: language specific translation evaluation
for any target language, in: Proceedings of the Ninth Workshop on Statistical
Machine Translation, Maryland, USA, June 2014.

[41] Y. Oda, H. Fudaba, G. Neubig, H. Hata, S. Sakti, T. Toda, S. Nakamura, Learning to
generate pseudo-code from source code using statistical machine translation, in:
Proceedings of the 30th IEEE/ACM International Conference on Automated
Software Engineering, Lincoln, NE, USA, November 9-13, IEEE Computer Society,
2015, pp. 574–584.

[42] B. Wei, Y. Li, G. Li, X. Xia, Z. Jin, Retrieve and refine: exemplar-based neural
comment generation, in: Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, Melbourne, Australia, September
21-25, IEEE Computer Society, 2020, pp. 349–360.

Z. Zhou et al.

http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0023
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0023
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0023
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0023
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0023
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0024
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0024
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0024
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0024
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0025
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0025
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0025
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0026
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0026
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0026
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0026
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0026
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0027
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0027
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0027
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0027
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0027
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0027
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0027
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0028
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0028
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0028
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0028
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0028
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0029
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0029
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0029
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0030
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0030
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0030
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0030
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0030
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0031
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0031
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0031
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0031
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0031
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0031
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0032
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0032
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0033
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0033
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0033
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0033
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0033
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0033
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0034
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0034
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0034
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0034
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0034
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0035
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0035
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0035
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0035
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0036
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0036
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0036
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0037
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0037
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0037
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0037
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0038
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0038
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0038
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0039
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0039
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0039
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0039
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0040
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0040
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0040
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0041
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0041
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0041
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0041
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0041
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0042
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0042
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0042
http://refhub.elsevier.com/S0950-5849(21)00207-X/sbref0042

	Summarizing source code with hierarchical code representation
	1 Introduction
	2 Background and related work
	2.1 Neural code summarization

	2.2 Attentional encoder-decoder framework
	3 Proposed approach
	3.1 Splitting code and its AST
	3.2 Hierarchical encoder
	3.3 Attentional decoder

	4 Experimental setup
	4.1 Dataset
	4.2 Training and inference settings
	4.3 Baselines
	4.4 Evaluation metrics

	5 Results and analysis
	5.1 RQ1: overall performance against baselines
	5.2 RQ2: effect of input lengths
	5.3 RQ3: ablation study
	5.4 RQ4: human evaluation

	6 Discussion
	6.1 Case study and visualization
	6.2 Time cost
	6.3 Threats to validity

	7 Conclusion and future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	Supplementary materials
	References

