
Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

RESEARCH ARTICLE

A Graph Sequence Neural Architecture for Code Completion with
Semantic Structure Features

Kang Yang1 | Huiqun Yu*1,2 | Guisheng Fan*1,3 | Xingguang Yang1 | Zijie Huang1

1Department of Computer Science and
Engineering, East China University of
Science and Technology, Shanghai, China

2Shanghai Key Laboratory of Computer
Software Evaluating and Testing,Shanghai,
China

3Shanghai Engineering Research Center of
Smart Energy,Shanghai, China
Correspondence
*Huiqun Yu, Department of Computer
Science and Engineering, East China
University of Science and Technology,
Shanghai,China. Email: yhq@ecust.edu.cn
*Guisheng Fan, Department of Computer
Science and Engineering, East China
University of Science and Technology,
Shanghai,China. Email: gsfan@ecust.edu.cn
Funding Information
National Natural Science Foundation of
China, Grant/Award Numbers: 61702334,
61772200; Natural Science Foundation of
Shanghai, Grant/Award Numbers:
17ZR1406900, 17ZR1429700; Planning
project of Shanghai Institute of Higher
Education No.GJEL18135.

Summary

Code completion plays an important role in intelligent software development for
accelerating coding efficiency. Recently, the predictionmodel based on deep learning
has achieved good performance in code completion task. However, the existing mod-
els cannot avoid three drawbacks:(i) In the existing models, the code representation
loses the information (parent-child information between nodes) and lacksmany effec-
tive features (orientation between nodes). (ii) The known code structure information
is not fully utilized, which will cause the model to generate completely irrelevant
results. (iii) Simple sequence modeling ignores repeated patterns and structural
information, and cannot capture the characteristics of correlation and directionality
between nodes. In this paper, we propose a Code Completion approach named CC-
GGNN, which is graph model based on Gated Graph Neural Networks(GGNN) to
address the problems. We propose a new architecture to obtain the effective code fea-
tures from code representation. In order to utilize the known information, we propose
Classification Mechanism, which classifies the representation of the node using the
known parent node and trains training graph in the model. The experimental results
show that our model outperforms the state-of-the-art methodsMRR@5 at most 9.2%
and ACC at most 11.4% in datasets.
KEYWORDS:
Code Completion; Deep Learning; Program Comprehension.

1 INTRODUCTION

As the scale of software continues to increase, developers benefit from code completion to accelerate software development
intelligently. It makes use of the existing code in the context to recommend the next code token, such as method calls or object
fields. Since the source code has obvious repeatability and predictability1, probabilistic statistical model can obtain this infor-
mation well. N-gram1,2,3 is the most widely used probabilistic statistical models in code completion. However, the input of the
probabilistic statistical model is simple code tokens, which lacks the semantic structure information of the source code. Besides,
the source code files are written by different programmers and have no fixed structure. For example, Python has a more casual
programming style than Java. These reasons lead to the low accuracy of the prediction model, and we may even get the opposite
result. To address these problems, the higher-order probabilistic model of probabilistic high-order grammar model (PHOG)4,
which uses context-free grammar to transform the source code into an Abstract Syntactic Tree (AST) as model input. AST not

2 Kang Yang ET AL

only reflects the grammatical structure of the code, but also contains important lexical information. The AST nodes may repre-
sent identifiers and strings in the source code. With the development of deep learning in natural language processing tasks, many
researchers believe that code is also a natural language. Recurrent Neural Network models (RNN)5,6,7 are the most common
neural network technique for next code prediction. Source code is represented as a node sequence or many node paths in these
models. The model computes the probability of the candidate node and recommends the AST node with the highest probability.
However, how to effectively combine the syntactic information and structural features of the code to better complete the code

is still a problem in the above model. There exist three fundamental problems not well solved in this regard.
The first one is the representation of code. The previous works are mainly divided into three categories for code representation:

code tokens, AST sequence, and AST node’s path. The code token models8,9 just uses statistical influence of the previous n
tokens on the predicted value. The AST sequence model6 obtains the sequence of the AST through the depth-first traversal
method. Although the extracted sequence information is rich, the hierarchical information of the node is not represented in the
sequence. The same problem also exists in the AST path model10,11,12, which only get the path between the terminal nodes.
To address this limitation, Liu et al.13 uses the root path and AST sequence to get the hierarchical structural informatiom.
However, the sequence models lost many information. The more forks of the AST, the more information lost in the sequence
code representation. Therefore, we directly convert the AST of the node into a directed graph. AST Graph will completely retain
the structural information between nodes, including directions.
The second problem is how to utilize the known structural information in node representation. In previous works6,11,

researches directly brings the node’s sequence into the model for calculation. In order to make full use of the existing informa-
tion, we classify these ASTs by their parent nodes. The prediction node with different parent nodes should consider different
candidate values, such as number and string. This problem was not considered in before works. Experimental results show that
this operation can improve the effect of the prediction, and the prediction for some parent nodes in the type prediction can reach
100% Accuracy(Section 6.3).
Finally, the structural information of the AST provides a strong indication of the dependencies between link nodes that should

be considered. However, simple sequential modeling ignores repetitive patterns and structural information, while undirected
graph modeling ignores sequential and repetitive patterns. In this paper, we combine the correlation and directionality between
AST nodes to model together.
To address the above problems, we propose CC-GGNN model for code completion with GGNN by integrating AST into a

comprehensive code completion model that can leverage both semantic and syntactical information of code. CC-GGNN model
use classification mechanism to classify ASTs by known parent node and transform them into different training graph. Finally,
our model use the AST structure can effectively obtain the format of code repetitive pattern and obvious structural information.
The GRU structure in GGNN can help us solve the problem of long-distance dependence.
To evaluate the performance of our proposed model, we conduct experiments on two real-world datasets, including Python

and JavaScript. The data that support the findings of this study are openly available in previous work4,6. We compared CC-
GGNN model with the state-of-the-art models: For the node’s type prediction, our model achieves the best accuracy of 84.7%
and 90.2% on Python and JavaScript datasets respectively, which improves the state-of-the-art methods from 2.3% to 11.4% in
PY50k dataset and improves the state-of-the-art methods from 3.2% to 10.1% in JS50k dataset. For the node’s value prediction,
our model achieves the accuracy of 73.5% and 78.8% on Python and JavaScript datasets respectively, which improves the state-
of-the-art methods from 1.6% to 10.1% in PY50k dataset and improves the state-of-the-art methods from 1.8% to 9.0% in JS50k
dataset. Statistical testing shows that the improvements over the baseline methods are statistically significant.
To sum up, the contributions of this work are as follows:
• We extract the AST representation from the predicted node, which contains the structure of the node in the source code.

Construct a directed training graph that contains rich structural information. The graph representation can effectively
obtain the format of code repetitive pattern and obvious structural information.

• We use the known structure information to divide the training data into different training graphs. The prediction nodes
with different parent nodes are considered separately. This classification mechanism can narrow the range of candidate
values and improve the accuracy of prediction.

• We evaluate our proposed model on two real-world datasets. Experimental results show that CC-GGNN achieves the best
performance compared with the state-of-the-art models.

The paper is organized as follows. We give a motivating example in Section 2. Sections 3 introduces the relevant background.
The proposed apporach is explained in Section 4. In Section 5 describes about dataset, data processing and baselines, respectively.

Kang Yang ET AL 3

The evaluation and discussion are introduced in Section 6. Section 7 discuss the threats of experiments. Related works are
addressed in Section 8. Finally, conclusions and future work are presented in Section 9.

2 MOTIVATING EXAMPLE

As shown in Figure 1, it shows a snippet of Python code and the corresponding AST. Each AST consists of terminal nodes and
non-terminal nodes. The terminal node format is type: value, which appears in the AST leaf node. Meanwhile, the non-terminal
node format is type: EMPTY, which is the intermediate node of the AST. The setting of EMPTY is the same as the previous
work6(not shown in Figure 1). The traditional sequence model obtains the code representation by depth-first traversal of the
AST, but this code representation method will cause information loss due to the AST’s node bifurcation. For example, the node
for of the second for loop in Figure 1, its parent node should be Module, but the parent node becomes break in the sequence
model. The more branches of the AST, the more information is lost. In this short example, there are 29 node branches. In order
to avoid information loss, we input AST directly into the model as graph structure data. Such code representation can make full
use of the structural information of the AST, and can effectively avoid the loss of node information.

Module

AST

Code

num = 0

for i in range(1, 100):

 if i == 30:

 num = i

 break

for i in range(2, num):

 if num % i == 0:

 j = num / i

 print(j)

Assign

for

NameStore num:0

NameStore:i

call

body

NameLoad:range

num:1

if compareEq

body

Assign

break

NameStore:num

NameLoad:i

NameLoad:i

num:30

num:100

for

NameStore:i

call

body

NameLoad:range

num:2

if compareEq

body

BinOpmod

Num:0

NameLoad:num
NameLoad:num

NameLoad:i

...

Parse

FIGURE 1 An example of Python program and their corresponding AST.

Secondly, in order to make full use of the known information, we process the parent node of the predicted node. Through
the parent node classification mechanism, we can construct the most relevant training data and candidate values. For example,
the node 30 in code snippet, we know the type of the predicted terminal node: num. Then, more attention should be paid to the
number in the next prediction, and the candidate value of the type string should not be considered. This known information can
help us complete the code completion task through the classification mechanism.
Repetitive codes have obvious repetitive structures in the tree structure of AST, and these repetitive structural features are

difficult to capture in the sequence model as a sequence code representation. Using AST to construct training graphs with tree
structure data as input can clearly obtain repeated structures. Combined with the GGNNmodel, it has strong fitting performance
for nonlinear structure data, and the model is more sensitive to repeated structures. For example, the two for loop codes in the
example can easily predict the predicted NameLoad: range of the second for loop by using the structure information of the
repeated AST.

4 Kang Yang ET AL

3 BACKGROUND

3.1 GGNN
The Gated Graph Neural Network (GGNN) is a classical spatial domain message passing model based on Gate Recurrent Unit
(GRU). In order to extend the neural network method for processing graph structured data, Scarselli et al.14 proposed the vanilla
graph neural network. Li et al.15 further introduced gated recurrent units and propose Gated Graph Neural Network in 2015. And
Daniel et al.16 proposed a new variant of the graph model. Formally, the GGNN model update functions are given as follows:

ℎ(1)v = [xTv , 0]
T (1)

a(t)v = ATv∶[ℎ
(t−1)T
1 , ..., ℎ(t−1)T

|v|]T + b (2)

ztv = �(W za(t)v + U zℎ(t−1)v) (3)

rtv = �(W ra(t)v + U rℎ(t−1)v) (4)

ℎ̃(t)v = tanℎ(W a(t)v + U (rtv ⊙ ℎ
(t−1)
v)) (5)

ℎ(t)v = (1 − ztv)⊙ ℎ
(t−1)
v + ztv ⊙ ℎ̃

(t)
v (6)

xTv is graph node annotations, which bring into hidden state to calculate the hidden layer vector of the first layer, and pads the
rest with zeros in Equation (1). Each node in the graph accepts hidden state information from neighboring nodes and transmits
similar information to neighboring nodes too. The model passes message between different nodes of the graph via incoming and
outgoing edges, which dependents on the edge type and node direction. The incoming and outgoing connection matrix combined
final connection matrix ATv∶ corresponding to node v in Equation (2). ztv is the update gates, which determines the next step to
update the hidden layer information. Equation (4) is reset gates and rtv controls reset node’s hidden layer information. a(t)v ∈ ℝ2D

contains activations from edges in both directions. The remaining are GRU-like updates that incorporate information from the
other nodes and from the previous timestep to update each node’s hidden state. Equation (3) and Equation (4) are the update
gates z and reset gates r, which � is the sigmoid function �(x) = 1∕(1 + e−x), and ⊙ is element-wise multiplication in Equation
(5). Finally, we get the final updated node status ℎ(t)v by Equation (6). Li et al.15 found this GRU-like propagation step is more
effective then vanilla recurrent neural network-style in experiments.
The GGNNmodel can not only obtain the structural features of the abstract syntax tree, but also use the GRU-like propagation

step to increase the long-distance dependency of the node’s information. So it is suitable for solving related problems of code
semantic structure.

3.2 AST Graph
To learn from sources programs, we need to find a suitable representation that captures semantics features of ASTs. In previous
work, one way to flatten each AST as a sequence of nodes in the in-order depth-first traversal6,16. The sequence code contains all
the information of the source file, the most relevant node information of the predicted node, such as the father and brother nodes.
However, the code of sequence representation only keep the order of nodes, it lacks the hierarchical information of the node
and lost many nodes parent information. Another representation is to decompose the path between nodes in the AST. An AST
path is a path between nodes in the AST, starting from one node, ending in another node, and passing through an intermediate
non-terminal in the path which is a common ancestor of both terminals. However, these methods of code representation have
some shortcomings, such as the loss of structure information, insensitivity to repeated structure, and insufficient utilization of
known information. So, we directly use the node’s AST to construct the training data graph. Each node can be represented by the
AST which constructed by the node before it. We use these nodes’ AST to construct the AST graph. Pairs of connected nodes
are parent-child relationships that can retain structural characteristics in the AST. Besides, the AST Graph will keep the parent
node information between nodes. More formally:
Definition 1 (AST Graph): An AST is a tree structure consisting of k nodes:[node1, node2...nodek+1]. The node nodek+1’s

AST can be represented by the partial AST constructed by the previous k nodes. Through the classification of the nodek, all

Kang Yang ET AL 5

nodes’ ASTs are divided into different sets:[set1, ...seti..., sett], for i ∈ [2...t], each seti of nodes’ ASTs builds a training graph
together. Every two adjacent nodes are parent-child or child-parent relationship in each AST. Duplicated nodes in the ASTs are
merged into one node in the AST Graph.

(b) AST Graph

Transform

(a) Nodes’ AST with parent node: n1

FIGURE 2 An example of AST Graph

In this paper, we have the similar points as the code representation in the previous related work21: 1. Keep the parent-child
relationship of each node, and de-duplicate the nodes to build a training graph. 2. The weight of node’s edge is the frequency of
the occurrence of the edge in the corresponding AST.
We also have unique characteristics of code representation: 1. We consider the directions between nodes, and the weights of

edges between directions are also different. The direction of the node can effectively maintain the structural characteristics and
hierarchical information. For example, an undirected graph can only determine the parent-child relationship between two nodes,
but cannot determine who is the parent node. 2. Classification mechanism, we combine the characteristics of predicting nodes
with different parent nodes, and divide the data into different training graphs. At the same time, we will also filter the candidate
values of these graphs. For example, the candidate values of graphs whose parent nodes areNum and Str are different. We will
introduce it in the Section 4.
Figure 2 shows the process of converting nodes’ AST to AST graphs. Figure 2(a) is the AST set with the parent node n1.

Through the connection between nodes and removing the duplicate nodes, we can obtain the training graph (Figure 2(b)) with
the parent node of the predicted node n1.

4 PROPOSED MODEL

In this section, we introduce CC-GGNN model in detail. We formulate the problem at first, then explain how to construct the
graph from node’s AST. Meanwhile, we describe our approaches to representing learning node embedding on AST graphs, show
how they are integrated into a embedding vector. As illustrated in Figure 3, it includes two steps: 1. Data processing, 2. Graph
representation and model prediction.

4.1 Problem Definition
Code completion is to predict the next node in source code.We get each node’s AST to construct the train graphG. For prediction
AST P_ast, we output probabilities ŷ for all possible nodes, where an element value of vector ŷ is the recommendation score of
the corresponding node. The node with Top-K types Ti and values Vj in source code will be the candidate nodes for prediction6.
Next node’s type and value prediction process are transformed into the math problem of finding the maximum ŷ in candidate
nodes, as shown in the following Equation (7), (8).

∃i ∈ {1, 2, 3, ...s} ∶ argmax
Ti

ŷ (G, Ti, P_ast) (7)

6 Kang Yang ET AL

Training data AST AST Graph Model

Attention

Weights

Candidates

Prediction

Softmax

Layer

Prediction data

Vector

Splicing
.
.
.

0.01

0.02

0.13

0.15

0.34

0.03

Node Embedding

Path Embedding P1

PgPs

Step1:

Step2:

Data

Process

FIGURE 3 The overall architecture of the model

∃j ∈ {1, 2, 3, ...k} ∶ argmax
Vj

ŷ (G, Vj , P_ast) (8)

4.2 Constructing AST Graphs
Each node will get a corresponding node’s AST p in source code(Section 3.2). In the AST p, each node represents an code
node vi ∈ V and these nodes are transformed into connected edges in the graph, that is, adjacent node (vi−1, vi) means edge
(vi−1, vi) ∈ E in graph. And these AST information will be jointly converted into a training graph G.
In Figure 3, according to the parent node n1 of the test AST, we filtered (data processing) the training data’s AST to construct

a training graph. The test data does not participate in the construction of the training graph. The red nodes in the graph are just
the reflection of the test data in the training graph. The operation of converting ASTs classification into multiple graphs can
avoid the excessive number of nodes in one train AST graph, and can reduce the impact of different AST on the accuracy of
the predicted node. After we get the training graph, each node can be embed as a vector of fixed dimensions by GGNN model:
vi ∈ Rd , where d is the dimensionality. Each p can be represented a vector based on those node vectors, we will introduce it in
detail in next section.

4.3 Learning Node Embedding
In this section, we will learn each node vector in graph. For example, the graph G and the matrix A are shown in Figure 4. In
directed graph G, the A is defined as the concatenation of two adjacency matrices A(out) and A(in), which represents weighted
connections of outgoing and incoming edges in the graph respectively. The sparsity structure matrices corresponds to the edges
of the graph and these matrices help us calculate the vector of nodes.
For each graph G, the GGNN model gets node’s vector. According to the graph, we rewrite Equation (2):

ati = Ai∶[vt−11 , ..., vt−1n]TH + b (9)

Kang Yang ET AL 7

(a) Example Graph. (b) Connection matrix A.

FIGURE 4 An example graph’s connection matrix.

The [vt−11 , ..., vt−1n] is the list of node vectors in p, whereH ∈ ℝd×2d . In GGNN model, Equation (2) can propagation the infor-
mation between different nodes by matrix A. Each node in the graph accepts hidden state information from neighboring nodes
and transmits similar information to neighboring nodes too. ztv is the update gates, which determine hidden layer information
update in next step. Equation (4) is reset gates and rtv controls reset node’s hidden layer information. Equation (3) and Equation
(4) will determine which node’s information will be passed on. Using the GRU’s update gate, the Equation (6) is the combi-
nation of the previous hidden state and the candidate state. After updating all nodes in AST graphs until convergence, we can
obtain the final node vectors by Equation (10).
There are several types of outputs that GGNNmodel produce in different situations. In this task, we get each node’s embedding

vector by Equation (10).
ov = g(ℎTv , xv) (10)

For each node v ∈ V output node scores and applying a softmax over node scores. In Equation (10), g is a specific function,
using the final state ℎTv and initial state xv of each node to calculate its output. The final state ℎTv is derived from Equation (6).

4.4 AST Embedding and Prediction
In our model, the predicted node is represented by its related nodes. It similar to the previous path and sequence-based method,
after we transform each node into a different vector, we convert the AST composed of nodes into a vector of fixed dimensions.
However, the previous work is only a simple vector addition calculation, and it is hard to obtain effective features. So, we plan
to apply a new strategy to combine long-term preference and node information.
We obtain the node of vectors by CC-GGNN model, then generate global vector together. The representation of each graph

is an embedding vector Ps ∈ Rd , which can divide in two parts: 1.local embedding P1. 2. global embedding Pg .
In AST, the parent node contains the most abundant information of the predicted node, such as parent-child characteristics.

So, the local embedding defined as the parent node’s vector. For example, in the test AST in Figure 3(red AST structure), the
parent node is n1, P1 = n1.
Then, we aggregate all node vectors to get global embedding pg in AST. The model obtain the priority of node information

by adding an attention mechanism, which shows in Equation (11)
�i = W T

1 �(W2n1 +W3vi) (11)
The parametersW1 ∈ Rd andW2,W3 ∈ Rd∙d control the weights of item embedding vectors. And, the global embedding vector
is calculated by parameter �i.

pg =
n
∑

i=1
�ivi (12)

8 Kang Yang ET AL

Finally, we compute the hybrid embedding pℎ by taking vector transformation over the vector splicing of the local vector P1
and global embedding vector �ivi:

P1 = n1 (13)

Pℎ = W4[n1;
n
∑

i=1
�ivi] = W4[P1;Pg] (14)

where matrix W4 ∈ Rd∙2d control combined vectors into the latent space Rd . Finally, we get the embedding of each global
representation pℎ from the model. Then, we compute the score ŷi for each candidate node v ∈ V by multiplying its embedding
vi with Pℎ for prediction:

ŷi = softmax(P T
ℎ vi) (15)

where ŷ ∈ ℝm denotes the probabilities of nodes appearing to be the next node in AST. And, We get the output vector of
the model by softmax function, which is Normalization function in output layer of the neural network. For each graph, the loss
function is defined as the cross-entropy of the prediction and the ground truth. It can be written as follows:

Loss(ŷ) = −
m
∑

i=1
yilog(ŷi) + (1 − yi)log(1 − ŷi) (16)

In Equation (16), the yi denotes the one-hot encoding vector of the ground truth node. And, we use the Back-Propagation
Through Time (BPTT) algorithm to train the proposed graph model. In the prediction process, the graph model built by
classification can improve the screening of more relevant candidate values.

5 EXPERIMENT SET UP

5.1 Data Availability Statement
The data that support the findings of this study are openly available in Machine Learning for Programming at http://plml.ethz.ch.
The data17 consists of two parts: 150k Python Dataset and 150k JavaScript Dataset.

5.2 Dataset and Preprocessing
We evaluate different approaches on benchmarked datasets: Python(PY150) and JavaScript(JS150). PY150 is summerized in
Table 1 and JS150 is summerized in Table 2.
As shown in Table 1 and Table 2, it is overall dataset statistics. In the type prediction task, there are only 181 types in

training data and test data in Table 3. Such asNameLoad, alias,NameParam, etc. These types are determined by the Python
programming language and cannot be defined by the programmer, which results in fewer candidate values. In the value prediction
task, the source file has 3.4*106 different node values in Table 4. There are arbitrary possibilities for encoding the program text.
The value can be any program identifier (such as None, format), literals (such as 0.035, 1075), program operators (such as ∕,
−, ∗), etc. It is impossible to use all of them for calculation, especially some of these values only appear once, so we need to
filter the vocabulary. Compared with the PY150 dataset, the structure of the JS150 dataset is simpler. The JS150 only contains
44 types of JavaScript language customization, and 2.6*106 different value candidates.
The number of unique node values in dataset is too large to directly apply neural networks models, thus we only choose K

most frequent values in training set to build the global vocabulary, where K is a free parameter. In order to effectively compare
with the baseline experiment, we set the value of K to 1k, 10k, and 50k. We further add two special values: EMPTY being the
value of non-terminal AST nodes and mark all out-of-vocabulary node values in training set and test set as UNK. The number
of nodes in the training graph is limited by the parameter K . When K=1k, the number of nodes in the AST graph is the least,
and there are only 1000 nodes at most. When K=50k, the number of graph nodes is the largest, and the largest graph has more
than 10,000 nodes.
Classificationmechanism:This mechanism is amethod of data processing.We obtain the known parent node of the predicted

node as a classification node, and divide the AST of each node into different sets. We convert each set into a training graph and
combine the attention mechanism (Section 4.4) to predict the completion result. For example, if we predict the node (n1 ∶?) in
Figure 2, the known information is that the parent node is n1, and obtain the training graph constructed by n1 to predict the type.

Kang Yang ET AL 9

TABLE 1 Dataset statistics for PY
Category Size

1 Training files 1.0*105
2 Test files 5.0*104
3 leaf nodes 1.6*107
4 Non-terminal nodes 1.4*107
5 Training Queries 6.2*107
6 Test Queries 3.0*107
7 Type Vocabulary 181
8 Value Vocabulary 3.4*106

TABLE 2 Dataset statistics for JS
Category Size

1 Training files 1.0*105
2 Test files 5.0*104
3 leaf nodes 1.6*107
4 Non-terminal nodes 1.4*107
5 Training Queries 10.7*107
6 Test Queries 5.3*107
7 Type Vocabulary 44
8 Value Vocabulary 2.6*106

TABLE 3 TYPE Nodes type for PY
Types Size

1 NameLoad 1.8*107
2 attr 9.2*106
3 AttributeLoad 8.4*106
4 Str 7.2*106
5 Call 6.9*106
6 Assign 3.9*106
...
181 CompareLtELtELtE 1

TABLE 4 VALUE Nodes type for PY
Types Size

1 self 4.1*106
2 0 6.3*105
3 None 6.1*105
4 1 5.5*105
5 True 4.6*105
6 name 3.5*105
...

3.4*106 http://github.com/lepture/flask-wtf 1

We can transform the most relevant AST into the one graph through the classification mechanism. And, we can narrow down
the candidate values of each graph by classification mechanism. For example, the candidate value ranges of Num and Str as
the parent node are different. We traverse the training data to find the candidate value of each parent node, and intersect the K
candidate values, the remaining values are the new candidates. We can avoid meaningless calculations by this process.
Through experiments, we found that the types of terminal nodes and non-terminal nodes in the PY150 are divided into 153

graphs, of which there are 141 types of terminal nodes (Section 6.3), and value can be divided into 15 types. The types of
terminal nodes and non-terminal nodes in the JS150 are divided into 44 graphs, of which there are 33 types of terminal nodes
(Section 6.3), and value can be divided into 16 types.

5.3 Baselines
As there are already prior investigations conducting code completion on the benchmarked dataset, to validate the effectiveness
of our proposed approaches, we need to compare them against the state-of-the-art. We compare CC-GGNNmodel with five code
completion models from previous work and these baselines can be divided into two categories: 1.Probabilistic Model. 2.Deep
learning Network.
Probabilistic Model DEEP318: The approach is general and can be used to learn a probabilistic model of any programming

language. Model implemented approach in a system called DEEP3 and evaluated it for the challenging task of learning proba-
bilistic models of JavaScript and Python. DEEP3 model achieves the highest prediction accuracy of the probabilistic models in
code completion task.
VanillaLSTM6,19: The model uses LSTM to extract AST node features from the flattened AST sequence. The input of each

LSTM unit is the concatenation of the previous hidden state and the type and value embedding of the current AST node. It is a
standard LSTM network without any attention or pointer mechanisms.
Pointer Mixture Network6: The model is an an attention and pointer generator network-based code completion method. Model

inspired by the prevalence of locally repeated terms in program source code, and the recently proposed pointer copy mechanism,
they propose a pointer mixture network for better predicting Out-of-Vocabulary(OoV) words in code completion. Based on the

10 Kang Yang ET AL

context, the pointer mixture network learns to either generate a within-vocabulary word through an RNN component(Attentional
LSTM model), or regenerate an OoV word from local context through a pointer component.
Transformer-XL13: The model is an improved Transformer architecture20 with the flattened AST sequence. In order to make

effective use of the code structure, the model adds a path from the predicted node to the root. It is biggest difference with Pointer
Mixture Network model in data process part. The naive multi-task learning is used, and task weights are fixed to be equal.
CCAG21: CCAG models the flattened sequence of AST as an AST graph. CCAG uses proposed AST Graph Attention Block

to capture different dependencies in the AST graph for representation learning in code completion. The sub-tasks of code com-
pletion are optimized via multi-task learning in CCAG, and the task balance is automatically achieved using uncertainty without
the need to tune task weights.
For a fair comparison, we set batch size as 128, hidden unit size of 1500 and train all model for 8 epochs. The initial learning

rate set as 0.001 and decay it by multiplying 0.6 after every epoch in all methods. These configurations are same as Li et al.6,
because this paper is widely cited. For VanillaLSTM and PointerMixtureNet, the gradient norm is clipped to 5, and the size of
context windows is set to 50. For Transformer based methods, we employ ℎ = 6 parallel heads, and the dimension of each head
dℎead is set to 64. We set the segment length to 50 and use a 6-layer layer number Transformer-XL network. We reproduce the
baseline: DEEP3, VanillaLSTM, PointerMixtureNet, Transformer-XL. The experimental results are shown in the Table 5. For
the CCAG model, our model uses the same parameter configuration for comparison experiments. Embedding size, hidden size
and batch size are all set to 128. The experimental results are shown in the Table 6.

5.4 Evaluation Mertics
We evaluate the quality of code completion using two automatic metrics: Accuracy and MRR@5. In the code completion task,
the previous model provides an Top-1 list of suggestion for each node’s type or value in the source code file. Those models use
Accuracy to evaluate the performance of our model. The calculation of Accuracy is shown in Equation 17.

Acc = 1
n

n
∑

i=1
acci (17)

For the itℎ predicted node, if Top-1 prediction is ground truth acci = 1, otherwise acci = 0. However, in actual code
completion tools, models often output more than one reference result. To measure performance on these tasks, we also use
mean reciprocal rank (MRR@5). Comparing to the metric (Acc@1), this is closer to the realistic scenario when completion
suggestions are presented to developers. The rank is defined as

MRR = 1
n

n
∑

i=1

1
ranki

(18)

where n is the number of predicting locations and ranki is the rank of the correct label given by the model for the itℎ data point.
We present MRR@5 as a percentage, in keeping with prior work22.

6 EVALUATION AND DISCUSSION

6.1 Research Questions
To evaluate our proposed approach, we conduct experiments to investigate the following research questions:
RQ1: How does the overall performance of our proposed method in terms of code completion compare with the state-

of-the-art model?
We compared the state-of-the-art method in the probabilistic model and the results of the Deep neural network models used

sequence and graph as input in the same dataset.
RQ2: For terminal nodes that are more complex and difficult to predict, how effective is our proposed model?
In previous work6 for the completeness of prediction, the model artificially added value: EMPTY to non-terminal nodes in

the process of data processing (Section 5.2). And the non-terminal node has 1.4*107 (about 43%) in the dataset. In other words,
about half of the value prediction tasks are EMPTY, so in order to further show the prediction effect of the model, we separately
increase the value prediction experiment.

Kang Yang ET AL 11

RQ3: What is the effectiveness of code representation and classification mechanism for our proposed model?
In this part, we calculate the impact of each component for our proposed model. We experimentally study the impact of the

semantic structure information of AST on the model.
RQ4: What is the effectiveness of the hidden size parameter and OoV problem on the experiment?
We analyze the experimental results of the hidden size values of 128, 256, 512, 1024, 1500. And, we discuss the influence of

the OoV problem in our proposed method.

6.2 Overall Performance
For RQ1, Table 5 and Table 6 illustrate the overall performance of our combined model compared to baselines. Our combined
model obviously outperforms all baselines on Accuracy in six datasets. Comparing to the purely AST sequence based baselines,
that is, Pointer Mixture Network and VanillaLSTM, our model achieves obvious improvements, indicating that it is much more
capable for modeling ASTs. CC-GGNN compared with the Transformer-XL model, the improvement is more bigger in type
prediction task. Our model is also better than CCAG model, which also takes graph data as input.

TABLE 5 Accuracy of various types and values for six datasets.
JS1k JS10k JS50k PY1k PY10k PY50k

value type value type value type value type value type value type
VanillaLSTM 62.6% 74.7% 66.3% 78.4% 69.8% 80.3% 59.2% 68.6% 61.3% 72.9% 63.4% 77.5%
PointerMixtureNet 69.8% 78.5% 73.4% 83.2% 75.3% 85.9% 64.7% 76.4% 68.3% 77.4% 69.2% 78.1%
Transformer-XL 73.9% 84.1% 75.3% 85.7% 77.2% 87.0% 68.1% 78.9% 70.6% 80.7% 71.9% 82.4%
CC-GGNN 75.3% 87.1% 77.1% 88.4% 78.8% 90.2% 69.9% 80.3% 71.8% 83.2% 73.5% 84.7%

TABLE 6 Accuracy of various types and values for six datasets with CCAG model.
JS1k JS10k JS50k PY1k PY10k PY50k

value type value type value type value type value type value type
CCAG 62.8% 75.7% 66.7% 78.6% 68.2% 80.1% 61.9% 76.7% 63.2% 80.9% 64.2% 75.3%
CC-GGNN 64.1% 78.8% 67.9% 81.1% 70.5% 83.3% 63.3% 78.4% 65.7% 81.3% 66.9% 80.1%

Experiments first discuss the application of our model for predicting types of AST nodes, it is essentially a prediction of the
code structure. As can be seen from the Table 5, for the node’s type prediction, our model achieves the accuracy of 84.7% on the
PY50k datasets respectively, which improves probabilistic model VanillaLSTM by 7.2%, improves Pointer Mixture Network by
6.6% and improves Transformer-XL 2.3%. Transformer-XL model can obtain the hierarchical structure information of sequence
data, the experimental results are better than the Pointer Mixture Network model.
Comparedwith the CCAGmodel in type task, ourmodel narrows the range of candidate values and considers the directionality

of the nodes. Therefore, the CC-GGNN model can obtains more AST structure information, and the maximum effect of the
model is improved by 3.6% in the JS50K dataset.
For the node’s value prediction, our model achieves the accuracy of 73.5% in PY50k dataset. Compared with the Pointer

Mixture Network, CCAG and Transformer-XL models, our model has increased by 4.3%, 2.7%, and 1.6% respectively. Through
the classification mechanism of the model, we can effectively filter out the most relevant candidate values, which can effectively
help us improve the accuracy of prediction. In the value prediction, the predictions of the UNK targets are treated as wrong
predictions. When the parameter K = 50K, the UNK rates for Python is 11%.

12 Kang Yang ET AL

6.3 Terminal Node Prediction
In the Python dataset, there are 1.4*107 non-terminal nodes form the intermediate structure of ASTs and 1.6*107 terminal node
form the leaf node. Non-terminal nodes have no value type in original AST, so the most predicted value in the overall experiment
is EMPTY, which is artificial definition. For RQ2, we add experiments to predict 16,003,628 leaf nodes in PY50k and predict
83,118,887 leaf nodes in JS50k. The difficulty of leaf nodes prediction mainly lies in the leaf’s value prediction, and the difficulty
can be divided into several points:

• The leaf node has a wide range of value candidates. In our training data, the type of value is as much as 3.4*106 in Python
dataset, which is much larger than the range of type 181. But, most of them are values that have appeared several times,
so we limit the candidates to calculate by the parameter K value. Values that are not within the K value range are marked
as UNK.

• The value of the leaf node appears random. Even if the range of candidates is selected by the parameterK value, the value
of the leaf node appears random. These leaf node values are randomly defined by programmers. If the relevant dataset is
small, the prediction results are very poor.

• The value of the leaf node has little correlation with the structure of the AST. The same parent node Nameload has tens
of thousands of candidate values, the AST structure has little influence on prediction. The prediction of value requires an
overall understanding of the entire snippet code, and the dependent nodes may have a long distance.

TABLE 7MRR@5 of various types and values of leaf token predictions for PY50k and JS50k
PY50k JS50k

value type value type
DEEP3 42.1% 82.6% 49.7 86.5%

PointerMixtureNet 44.8% 85.2% 56.3 89.4%
Transformer-XL 46.4% 87.3% 58.6 90.3%

CC-GGNN 49.3% 91.8% 59.1 93.6%

Overall, Table 6 shows that our model achieved better scores than the probability model DEEP3 in PY50k and JS50k. Besides,
our model achieves better scores than deep neural network models: PointerMixtureNet and Transformer-XL on both datasets.
Our best performing model is 4.5% higher than the MRR@5 of PointerMixtureNet (from 44.8% to 49.3%), and is 2.9% higher
than the MRR@5 indicator of the Transformer-XL model (from 46.4% to 49.3%) in leaf’s value task.

Kang Yang ET AL 13
TA

BL
E
8
Th

et
yp
e
pre

dic
tio

nr
esu

lto
fth

ele
af

no
de

TY
PE

AC
C

M
R
R
@
5

TY
PE

AC
C

M
R
R
@
5

TY
PE

AC
C

M
R
R
@
5

Mo
du
le

81
.04

%
90
.22

%
Co

mp
are

LtE
69
.41

%
83
.21

%
Co

mp
are

LtG
t

33
.33

%
66
.67

%
Im

po
rtF

rom
10
0.0

0%
10
0.0

0%
Co

mp
are

In
80
.06

%
89
.20

%
Au

gA
ssi

gn
Mo

d
54
.22

%
63
.72

%
ali

as
10
0.0

0%
10
0.0

0%
nam

e
10
0.0

0%
10
0.0

0%
Co

mp
are

Gt
Gt

39
.65

%
60
.13

%
bas

es
99
.99

%
99
.99

%
Co

mp
are

No
tIn

80
.31

%
89
.79

%
Co

mp
are

Eq
Eq

Eq
Eq

54
.15

%
71
.55

%
Att

rib
ute

Lo
ad

99
.36

%
99
.68

%
Co

mp
are

IsN
ot

98
.14

%
99
.11

%
Co

mp
are

IsI
s

90
.12

%
91
.33

%
bo
dy

94
.71

%
96
.82

%
fin

alb
od
y

10
0.0

0%
10
0.0

0%
Co

mp
are

LtL
tEE

qG
tEG

tNo
tEq

10
0.0

0%
10
0.0

0%
As

sig
n

90
.19

%
95
.30

%
Ge

ner
ato

rEx
p

92
.38

%
94
.54

%
Co

mp
are

LtL
tEE

qL
tLt

Lt
10
0.0

0%
10
0.0

0%
Ca

ll
68
.45

%
73
.31

%
com

pre
hen

sio
n

99
.88

%
99
.94

%
Co

mp
are

LtE
LtL

tE
75
.00

%
87
.50

%
arg

um
ent

s
80
.01

%
87
.62

%
Bin

Op
Di
v

61
.32

%
72
.65

%
Co

mp
are

Eq
Is

70
.11

%
73
.49

%
arg

s
10
0.0

0%
10
0.0

0%
Un

ary
Op

US
ub

99
.87

%
99
.87

%
Au

gA
ssi

gn
Bit

Xo
r

50
.97

%
67
.33

%
def

aul
ts

71
.31

%
79
.05

%
IfE

xp
72
.26

%
81
.33

%
Co

mp
are

LtG
tEq

Gt
EL

tEN
otE

qIn
No

tIn
IsI

sN
ot

0.0
0%

0.0
0%

Re
tur

n
81
.13

%
86
.62

%
Bin

Op
Po

w
72
.62

%
84
.55

%
Co

mp
are

Gt
Gt
Gt

10
0.0

0%
10
0.0

0%
dec

ora
tor

_li
st

10
0.0

0%
10
0.0

0%
Lis

tCo
mp

96
.21

%
97
.41

%
Co

mp
are

Gt
Gt
E

58
.31

%
66
.75

%
Tu

ple
Lo

ad
85
.36

%
93
.18

%
Pri

nt
74
.16

%
84
.24

%
Au

gA
ssi

gn
Po

w
33
.33

%
67
.63

%
Ex

pr
99
.90

%
99
.95

%
La

mb
da

80
.15

%
89
.73

%
Co

mp
are

Gt
EG

tE
50
.00

%
75
.00

%
Im

po
rt

10
0.0

0%
10
0.0

0%
As

ser
t

61
.21

%
78
.43

%
Au

gA
ssi

gn
RS

hif
t

72
.65

%
84
.33

%
If

99
.75

%
99
.87

%
Se
t

77
.32

%
83
.22

%
Co

mp
are

Gt
EL

t
0.0

0%
0.0

0%
Su

bsc
rip

tLo
ad

99
.96

%
99
.98

%
Co

mp
are

LtE
LtE

63
.18

%
64
.68

%
Au

gA
ssi

gn
LS

hif
t

54
.31

%
72
.13

%
Sli

ce
77
.36

%
83
.15

%
Au

gA
ssi

gn
Mu

lt
54
.21

%
67
.14

%
Co

mp
are

LtE
Gt
E

10
0.0

0%
10
0.0

0%
key

wo
rd

53
.24

%
71
.45

%
Au

gA
ssi

gn
Bit

An
d

71
.91

%
79
.94

%
Co

mp
are

LtE
LtE

LtE
50
.18

%
63
.54

%
Wi

th
99
.25

%
99
.62

%
Se
tCo

mp
10
0.0

0%
10
0.0

0%
Co

mp
are

Eq
Gt

50
.00

%
75
.00

%
Di
ct

89
.25

%
93
.09

%
Au

gA
ssi

gn
Bit

Or
72
.08

%
81
.88

%
Co

mp
are

LtE
q

10
0.0

0%
10
0.0

0%
Ind

ex
64
.27

%
78
.88

%
Di
ctC

om
p

93
.21

%
95
.36

%
Co

mp
are

IsI
sIs

10
0.0

0%
10
0.0

0%
Fo

r
99
.93

%
99
.96

%
Yie

ld
79
.10

%
86
.25

%
Co

mp
are

No
tEq

Eq
10
0.0

0%
10
0.0

0%
Tu

ple
Sto

re
10
0.0

0%
10
0.0

0%
De

let
e

10
0.0

0%
10
0.0

0%
Co

mp
are

Eq
No

tEq
Eq

80
.00

%
90
.00

%
Un

ary
Op

No
t

92
.13

%
94
.90

%
Su

bsc
rip

tD
el

10
0.0

0%
10
0.0

0%
Co

mp
are

Gt
EG

t
64
.37

%
76
.19

%
Ra

ise
89
.35

%
96
.44

%
Co

mp
are

Eq
Eq

43
.82

%
65
.16

%
Co

mp
are

Eq
No

tEq
33
.33

%
50
.00

%
com

par
eE

q
74
.55

%
85
.85

%
Gl
ob
al

10
0.0

0%
10
0.0

0%
Tu

ple
De

l
10
0.0

0%
10
0.0

0%
Att

rib
ute

Sto
re

99
.99

%
99
.99

%
Bin

Op
Bit

An
d

69
.14

%
78
.31

%
Co

mp
are

Eq
Eq

Eq
Eq

Eq
50
.00

%
75
.00

%
Su

bsc
rip

tSt
ore

10
0.0

0%
10
0.0

0%
Bin

Op
Bit

Or
84
.31

%
92
.62

%
Co

mp
are

Gt
Lt

52
.13

%
73
.81

%
ore

lse
50
.42

%
68
.67

%
Lis

tSt
ore

10
0.0

0%
10
0.0

0%
Co

mp
are

Gt
Eq

Gt
0.0

0%
0.0

0%
Bo

olO
pA

nd
90
.22

%
95
.12

%
Ex

ec
70
.34

%
83
.33

%
Co

mp
are

Gt
EL

tE
0.0

0%
0.0

0%
Bin

Op
Ad

d
68
.47

%
80
.62

%
Co

mp
are

LtL
t

59
.53

%
73
.36

%
Co

mp
are

LtE
Gt

25
.00

%
25
.00

%
Bin

Op
Mu

lt
57
.12

%
78
.31

%
Un

ary
Op

Inv
ert

86
.42

%
89
.34

%
Co

mp
are

LtE
Gt
Gt

0.0
0%

0.0
0%

14 Kang Yang ET AL
TA

BL
E
8
Th

et
yp
e
pre

dic
tio

nr
esu

lto
fth

ele
af

no
de(

Co
nti

nu
ed)

)
Lis

tLo
ad

85
.00

%
87
.43

%
Bin

Op
Flo

orD
iv

64
.38

%
82
.17

%
Co

mp
are

InI
n

0.0
0%

0.0
0%

Bin
Op

Mo
d

91
.07

%
95
.43

%
Au

gA
ssi

gn
Di
v

65
.95

%
80
.10

%
Co

mp
are

InI
s

0.0
0%

0.0
0%

Co
mp

are
Gt

81
.77

%
89
.41

%
Bin

Op
RS

hif
t

60
.58

%
70
.43

%
Co

mp
are

LtG
tE

0.0
0%

0.0
0%

typ
e

10
0.0

0%
10
0.0

0%
Un

ary
Op

UA
dd

66
.42

%
73
.56

%
Co

mp
are

No
tEq

No
tEq

10
0.0

0%
10
0.0

0%
Wh

ile
82
.55

%
84
.42

%
Re

pr
10
0.0

0%
10
0.0

0%
Co

mp
are

No
tEq

No
tEq

No
tEq

No
tEq

10
0.0

0%
10
0.0

0%
Co

mp
are

No
tEq

63
.02

%
76
.19

%
Bin

Op
LS

hif
t

69
.63

%
81
.49

%
Co

mp
are

IsI
sIs

IsI
s

10
0.0

0%
10
0.0

0%
Au

gA
ssi

gn
Ad

d
82
.45

%
90
.74

%
Au

gA
ssi

gn
Flo

orD
iv

48
.14

%
70
.11

%
Co

mp
are

LtL
tLt

Lt
0.0

0%
0.0

0%
Bo

olO
pO

r
79
.35

%
83
.46

%
Att

rib
ute

De
l

89
.31

%
90
.13

%
Co

mp
are

No
tEq

No
tEq

No
tEq

0.0
0%

50
.00

%
Bin

Op
Su

b
70
.34

%
78
.55

%
Co

mp
are

LtL
tE

64
.52

%
76
.98

%
Co

mp
are

Eq
Gt
Eq

10
0.0

0%
10
0.0

0%
Co

mp
are

Gt
E

76
.12

%
87
.35

%
Bin

Op
Bit

Xo
r

80
.31

%
87
.66

%
Co

mp
are

Gt
Gt
Gt
Gt

0.0
0%

0.0
0%

Co
mp

are
Lt

73
.01

%
76
.95

%
Co

mp
are

Eq
Eq

Eq
Eq

Eq
Eq

50
.00

%
50
.00

%
Co

mp
are

LtL
tLt

0.0
0%

0.0
0%

Au
gA

ssi
gn
Su

b
70
.49

%
83
.48

%
Co

mp
are

Eq
Eq

Eq
75
.00

%
85
.55

%
Co

mp
are

IsN
otI

sN
ot

0.0
0%

0.0
0%

Co
mp

are
Is

99
.39

%
99
.67

%
Co

mp
are

LtE
Lt

39
.67

%
58
.73

%
Co

mp
are

InN
otI

n
0.0

0%
0.0

0%

Kang Yang ET AL 15

Our model improves the type prediction more obviously. For PY50k dataset, the experimental result of MRR@5 is 91.8%.
For JS50k dataset, the experimental result of MRR@5 is 93.6%. We will further show the experimental results in the Tables 8
and Tables 9.
For the type prediction of leaf nodes, our model divides all ASTs into 141 different training graphs by the known parent nodes

of the leaf nodes. Each training graph contains different number of AST. The training graph constructed with AttributeLoad
has 5003371 nodes’ AST, which contains the largest number of nodes in all training graphs. Our approach has achieve high
accuracy and MRR@5 scores. There are also training graphs with only one AST, such as CompareNotEqNotEqNotEq and
CompareIsIsIsIsIs. Because the number of training data is too small, the prediction Accuracy and MRR@5 value of the
model decrease.
The detail of experimental results of the model are shown in Table 8 and Table 8. In PY50K dataset, the experimental results

show that the model can achieve 100% prediction accuracy for 28 training graphs such as ImportForm. These nodes account for
approximately 8.8% of the total and mark as gray in the table. But there are also 13 training graphs constructed by parent nodes
whose prediction accuracy is zero. We found that these training data are less than a hundred ASTs through analysis. Most of
them only appeared once. In other words, the training data rarely leads to low prediction accuracy.

TABLE 9 The type prediction result of the leaf node
TYPE ACC MRR@5 SIZE TYPE ACC MRR@5 SIZE

VariableDeclarator 72.85% 85.74% 9.14*105 CallExpression 85.64% 91.85% 1.21*107
FunctionDeclaration 99.99% 99.99% 1.10*106 AssignmentExpression 89.07% 93.01% 4.56*106
ArrayExpression 93.48% 95.73% 4.64*106 ExpressionStatement 95.16% 96.86% 6.28*104
MemberExpression 94.35% 97.34% 3.53*107 FunctionExpression 98.36% 99.65% 3.06*106
ArrayAccess 82.36% 87.64% 3.96*106 UnaryExpression 92.28% 93.62% 8.24*105
NewExpression 89.72% 92.45% 7.52*105 BinaryExpression 77.82% 82.43% 7.04*106
Property 76.55% 79.40% 3.58*106 IfStatement 86.16% 88.47% 4.30*105
ConditionalExpression 81.01% 86.18% 7.09*105 LogicalExpression 67.87% 72.73% 7.74*105
ReturnStatement 78.65% 83.84% 7.80*105 VariableDeclaration 100.00% 100.00% 1.01*106
BlockStatement 82.37% 87.55% 3.94*105 UpdateExpression 100.00% 100.00% 4.08*105
ForInStatement 99.78% 99.81% 1.18*105 ForStatement 91.14% 93.32% 7.46*104
WhileStatement 76.25% 81.41% 1.56*104 CatchClause 95.89% 97.10% 7.87*104
TryStatement 99.39% 99.60% 6.09*104 SwitchStatement 98.64% 99.17% 2.00*104
SwitchCase 84.89% 88.10% 3.59*105 ThrowStatement 95.02% 96.68% 1.98*104
DoWhileStatement 65.64% 69.41% 2914 Program 99.52% 99.56% 7784
SequenceExpression 89.02% 92.47% 3.44*104 LabeledStatement 50.00% 75.00% 8
AssignmentPattern 44.44% 74.07% 9

Compared with the PY50k dataset, JS50K is relatively simple. Although JS50K has more leaf nodes, there are fewer types
and value categories. There are only 33 types of parent nodes of leaf nodes, which greatly reduces the difficulty of prediction. It
can be seen from Table 8 that the V ariableDeclaration and UpdateExpression training graphs of the parent node marked in
gray can achieve a prediction accuracy of 100%, accounting for 1.71% of all leaf nodes.
Case Study: Figure 5. is a case in CCAG, it is contained in the test set of Python. The code segment is used to illustrate how

the incoming email is handled in Google Cloud. NameStore:body highlighted with green is the next node to predict.
First, it is easily find that the parent node of the prediction node is T upleStore, after we convert the code file into AST.

Combining our classification mechanism and traversing the training dataset, we found that there are only five candidates whose
parent node is T upleStore. Candidates:[NameStore, AttributeStore, T upleStore, ListStore, SubscriptStore].
However, these model results in Figure 5. all contain values that should not be considered, we marked by the red box. CCAGg

and PointerMixtureNet models even predict that the maximum probability value is a non-candidate value. Therefore, a large
and invalid candidate value table not only wastes computing power and time, but also reduces the accuracy of the model.
Transformer-XL mainly gives high probability to the node type on the path from the predicted node to the root in the AST.

16 Kang Yang ET AL

Name

Store

Attribute

Store

Tuple

Store

0.87

0.020.09

TupleStore

NameStore
Attribute

Store

TupleStore ListStore

Subscript

Store
Candidates:

ParentsNode: CC-GGNN

FIGURE 5 A code completion example.

Similarly, our model successfully captures the repetitive pattern (the repeated local ASTs) and has a higher probability than the
CCAG model. We think there are two reasons: 1. The Gated Graph Neural Network model has a strong nonlinear fitting ability
to graph structure data. Besides CC-GGNN model can learn the inherent characteristics of the directions and edges between
nodes in the graph structure, which is helpful for accurate prediction of repeated structure data. 2.In the GGNN model, the way
of information transmission between nodes is that each node spreads to surrounding nodes, and the information transmitted by
the same graph structure data is the same. These reasons led to the success of CC-GGNN captures the repetitive pattern. Another
point is that for the MRR@5 metric, our model can always display the predicted value correctly.

6.4 Each Component Effect on the Model
For RQ3, we conducted an ablation study to examine the impact of the two proposed components used in our model: classifica-
tion mechanism and different AST representations. We conduct experiments without classification mechanism and use the AST
representation of the CCAG and Transformer-XL models respectively.
For type prediction task, the results are shown in Figure 6. The blue line shows the results of our full model. The yellow

line shows the code representation of our model combined with Transformer-XL model’s code representation. The green line
shows the our model with CCAG model’s undirected graph representation settings. And the red line removes the classification
mechanism from the full model. It is obvious that full model is better than other three models. It can be seen that the effect of
using the graph model in combination with other AST representations is weaker than the full model. Besides, the model effect of
removing the classification mechanism decreases more. which demonstrates that both the classification mechanism and our AST
representations are necessary to improve the performance, and classification mechanism contributes more to the improvements.
For value prediction task, the results are shown in Figure 7. The blue line shows the results of our full model. The yellow and

green lines present the results of our model with other AST representation, and the red line removes the classification mechanism
from the full model. Similar to the experimental results of type prediction, these models have worse results with no classification
mechanism and other AST representation.
For RQ3, we draw conclusions from the above experimental results. Both classification mechanism and structure character-

istics of AST graph representation can effectively improve the predictive ability of the model. The classification mechanism has
the most obvious effect on the overall model, and it is effective to increase the attention mechanism to the parent node of the
predicted node.

6.5 Hidden Size and OoV Problem
For RQ4, we take the PY50k data set as an example. First, we analyze impact on the model by adjusting the range of hidden
size. Then, we discussed the impact of the OoV problem on the value prediction task.
As shown in Figure 8, with the increase of the hidden size parameter, the accuracy of the value and type prediction tasks

are improved. The orange line shows that the change of hidden size has no obvious effect on the prediction accuracy of type.

Kang Yang ET AL 17

1 2 3 4 5 6 7 8
Epoch

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

M
RR

@
5

The effect of each component in our model.
Full Model
Sequence Rep
CCAG Rep
No Classification

FIGURE 6 Effectiveness of each component in type prediction task

However, the trend of value prediction task changes is more significant from line blue. The reason is that value has more nodes
than type in dataset, so it is more sensitive to hidden size.
The influence of the OoV problem: 1. The OoV problem will affect the upper limit of the model’s prediction accuracy. For the

six data sets we use, the OoV rates of JS1k, JS10k, JS50k, PY1k, PY10k, and PY50k are 20%, 11%, 7%, and 24%, respectively.
16%, 11%. This leads to the upper limit of the prediction accuracy of our CC-GGNNmodel of 80%, 89%, 93%, 76%, 84%, 89%.
2. Because we define the OoV word to participate in the training of the model by UNK, and we successfully predict the OoV
word as UNK, we think it is wrong. Therefore, some nodes are predicted to be UNK, which will reduce the accuracy of model
prediction.

6.6 Training Cost Analysis
In order to compare the training time of the model, we selected the pointer network and the Transformer-XL model. With help
of the Transformer-XL model, the representation of each input of each segment depends on the self-attention layer calculation,
and repetition only occurs between segments. Therefore, it allows more parallelization and requires less time to train. In Pointer
Mixture Network, they adopt LSTM as the language model, where most of the recurrent computations are performed during the
hidden states’ updating process. Similar to the pointer network, our model also spend a lot of time in the vector transfer of the
hidden layer, so the training time is longer than the Transformer-XL model, but our classification mechanism reduces the range
of candidate values and reduces the training time. The experimental results are shown in Table 9, Transformer-XL model spend
78% of the time compared to our model. Compared with the pointer network model, our training time is shortened by about 10%.

TABLE 10 Training cost analysis in the Python dataset
Model # of Parameters Training Time(h/Epoch)

PointerMixtureNet 162.6M 9.4
Transformer-XL 98.9M 6.7

CC-GGNN 147.5M 8.5

18 Kang Yang ET AL

1 2 3 4 5 6 7 8
Epoch

0.38

0.40

0.42

0.44

0.46

0.48

0.50

M
RR

@
5

The effect of each component in our model.
Full Model
Sequence rep
CCAG rep
No Classification

FIGURE 7 Effectiveness of each component in value prediction task

7 THREATS TO VALIDITY

Threats to external validity relate to the quality of the datasets we use. Take the Python dataset as an example. All the data
comes from more than 3000 projects. There are 150,000 training data and test data, so there are multiple data sources for one
project. Then the code habits of the programmers of this project have a greater impact on the training of the model. Python and
JavaScript are two benchmark datasets that have been used in previous code completion work6,13. All programs in the dataset
are from GitHub repositories. Therefore, further research is needed to verify our findings and extend them to other programming
languages. For example, we will consider the Java dataset13.
Threats to internal validity includes the influence of classification mechanism on the number of training graph. The perfor-

mance of our model would be affected by the different graph. For example, in section5.3, the node with 0% prediction accuracy.
We divide the training graph by the parent node, resulting in less training data for this node and poor prediction results.
Threats to construct validity relate to the suitability of our evaluation measure. We use accuracy and MRR@5 as the metric

which evaluates the proportion of correctly predicted next token. It is a classical evaluation measure for code completion and is
used in almost all the previous code completion work. Recently, the MRR metric begin to use in code completion work22 23.

8 RELATEDWORK

8.1 Code Completion
The n-gram language models24,25,26,27 are the early Machine Learning models for code completion. These probability models
simple and effective for predict the next token. An n-gram language model computes the probability of the next token given
previous n code tokens as model input. These models only use the most primitive tokens representation of the code and do not
consider effective semantic structure features. Therefore, in subsequent research, the researchers used the abstract syntax trees
representation code and bring its into the probability model to improve the accuracy of the prediction. These models include
probabilistic context-free grammars28 and probabilistic higher-order grammars4. This class of model uses context-free grammar
to convert the source code into an AST, and predicts next token based on the information selectively collected across paths in

Kang Yang ET AL 19

128 256 512 1024 1500
hidden size

0.65

0.70

0.75

0.80

0.85

0.90

0.95

AC
C

The impact of the hidden sizes in our model
value task
type task

FIGURE 8 The impact of the hidden sizes in our model

AST. The AST path contains rich structural and semantic features, which is the key to improve the prediction accuracy of the
next node in probabilistic grammar models. Bruch et al.29 used the KNN algorithm to find the most similar completed fragments
in the existing code base and provided candidates for method calls. It also points out that many machine learning algorithms
can be introduced into the research of code completion. Subsequently, Raychev et al.11 used the classic model of decision tree
model combined with the path information of AST to achieve the highest prediction accuracy of this line of works. Their model
learns a decision tree model that uses this information essentially as features. Our work is significantly better than DEEP3.
With the development of deep learning in natural language processing tasks, many researchers believe that code is also

a natural language. Deep learning is able to capture longer dependency within a sequence or node’s path. Recurrent Neural
Network (RNN) is the most common neural technique for code prediction. And, their variants feed input code as a linear AST
sequence. In this way, the RNN essentially learns a language model over the training corpus, and it is generally believed to do
so better than n-grams22 model. Indeed, several papers in the literature, including work done in industrial contexts19 has used
RNNs. Liu et al.30 attempt has been made on feeding RNN with serialized ASTs. The further research accuracy is improved
by using more AST guided architectures6. In addition to the above models, there are other different types of code completion
models. For example, use the data after the prediction node to make predictions31,32,33,34.

8.2 Graph Embedding
Graphmodels are widely used in graph structure node quantization processing. The graph embedding obtains the link conversion
sequence of the nodes and edges in the structure, and then embeds the sequence into a fixed-dimensional vector through the graph
model. Bryan Perozzi et al.35 proposed DeepWalk model to process graph problem, which is uses a random walk algorithm.
However, the random walk algorithm extract path sequence is random, and no attention is paid to the depth-first search (DFS)
and breadth-first search (BFS) paths between fusion nodes. To solve this problem, Aditya Grover et al.36 proposed Node2vec
model, which is a biased random walk algorithm based on the edge weight of graph nodes. The Node2vec algorithm can fuse
the structural information of the node DFS and BFS. Node2vec can effectively integrate the information around the node, so the
extracted features are more effective. The powerful method of in modeling the dependency relationship between graph nodes
has made the research field related to graph analysis achieve good results. Graph models can also be combined with depth
models to predict tasks. Structural deep network embedding (SDNE)37 recommends using a deep autoencoder to maintain the

20 Kang Yang ET AL

proximity of the first-order and second-order networks. It achieves this by jointly optimizing these two approximations. The
graph convolutional network (GCN)38,39,40 model aggregates the neighborhood embedding representations of nodes through
iteration, and and uses the previous iteration embedding combined with the embedding function to obtain a new embedding.
Only the aggregation embedding of the local neighborhood makes it scalable, and iteratively learns to embed a node to describe
the global neighborhood. GGNN14,15 is a classical spatial domain message passing model based on GRU41,42, which can solve
the problem of gradient in sequence long-term memory and back propagation.
Allamanis et al.31 use graph model to represent the structure and semantic structure information of the source code, and found

that graph neural networks have better performance than convolutional neural networks in variable completion and variable
misuse tasks. The research of Rahman et al.43 pointed out that the graph model has a better predictive effect than the N-gram
model. However, there is a lack of comparison with the deep neural network model, and it is recommended to further study the
statistical code graph model to accurately capture more complex coding models.

9 CONCLUSION AND FUTUREWORKS

In this work, we propose CC-GGNN model to solve the problems of the code completion. To better represent AST nodes,
we classify node’s ASTs by known parent node and transform them into training directed graph. Finally, we combine power-
ful GGNN model with the ability to integrate structural information to predict the next node. Compared with previous work,
the experimental results show that our model can effectively improve the results of code completion. Especially for the type
prediction of leaf nodes, our model has a significant improvement effect.
In future work, we will apply the CC-GGNN model to more programming languages, such as Java. Since there are many

comparison methods and the Python grammar has more casual style. This style leads to the Python dataset being one of the most
difficult to predict.
Secondly, our model cannot predict OoV problem. It is a great challenge for predicting the rare words artificially defined by

programmers in source code. In previous work, researchers used Pointer Mixture Network and copying mechanisms44 to predict
Out-of-Vocabulary(OoV). We will try these strategies in the next experiments to improve our model.
Finally, wewill try to bringmore code information into themodel, such as using Control FlowGraph(CFG)45,46. CFG contains

a lot of call relationships between nodes, which may help us improve the prediction accuracy of value prediction task.

ACKNOWLEDGMENTS

This work is partially supported by the NSF of China under grants No.61702334 and No.61772200, the Project Supported by
Shanghai Natural Science Foundation No.17ZR1406900, 17ZR1429700 and Planning project of Shanghai Institute of Higher
Education No.GJEL18135.

References

1. Hindle A, Barr ET, Gabel M, Su Z, Devanbu PT. On the Naturalness of Software. In: Commun. ACM 2016; 59(5): 122–131.
2. Hellendoorn VJ, Devanbu PT. Are Deep Neural Networks the Best Choice for Modeling Source Code?. In: Proceedings of

the 2017 11th Joint Meeting on Foundations of Software Engineering; 2017: 763–773.
3. Tu Z, Su Z, Devanbu PT. On the Localness of Software. In: Proceedings of the 22nd International Symposium on

Foundations of Software Engineering; 2014: 269–280.
4. Bielik P, Raychev V, Vechev MT. PHOG: Probabilistic Model for Code. In: Proceedings of the 33nd International

Conference on Machine Learning; 2016: 2933–2942.
5. Bhoopchand A, Rocktäschel T, Barr ET, Riedel S. Learning Python Code Suggestion with a Sparse Pointer Network. In:

CoRR; 2016; URL:http://arxiv.org/abs/1611.08307.

Kang Yang ET AL 21

6. Li J, Wang Y, Lyu MR, King I. Code Completion with Neural Attention and Pointer Networks. In: Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence; 2018:4159-4165.

7. Malhotra P, Vig L, Shroff G, Agarwal P. Long Short Term Memory Networks for Anomaly Detection in Time Series. In:
23rd European Symposium on Artificial Neural Networks; 2015.

8. Allamanis M, Sutton C. Mining Source Code Repositories at Massive Scale Using Language Modeling. In: Proceedings of
the 10th Working Conference on Mining Software Repositories; 2013: 207–216.

9. Nguyen TT, Nguyen AT, Nguyen HA, Nguyen TN. A Statistical Semantic Language Model for Source Code. In: oint Meet-
ing of the European Software Engineering Conference and the Symposium on the Foundations of Software Engineering;
2013:532–542.

10. Alon U, Zilberstein M, Levy O, Yahav E. A General Path-Based Representation for Predicting Program Properties. In:
Proceedings of the 39th Conference on Programming Language Design and Implementation; 2018: 404–419.

11. Alon U, Brody S, Levy O, Yahav E. Code2seq: Generating Sequences from Structured Representations of Code. In: 7th
International Conference on Learning Representations; 2019.

12. Alon U, ZilbersteinM, Levy O, Yahav E. Code2vec: Learning Distributed Representations of code. In: Proc. ACMProgram.
Lang. 2019; 3(POPL): 40:1–40:29.

13. Fang L, Ge Li, BolinW, Xin X, Zhiyi F, Zhi J. A Self-Attentional Neural Architecture for Code Completion with Multi-Task
Learning. In: Proceedings of the 28th International Conference on Program Comprehension; 2020: 37–47.

14. Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G. The Graph Neural Network Model. IEEE Trans. Neural
Networks 2009; 20(1): 61–80.

15. Li Y, Tarlow D, Brockschmidt M, Zemel RS. Gated Graph Sequence Neural Networks. In: 4th International Conference on
Learning Representations; 2016.

16. Beck D, Haffari G, Cohn T. Graph-to-Sequence Learning using Gated Graph Neural Networks. In: Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics; 2018: 273–283.

17. [dataset]Raychev Veselin, Vechev Martin, Krause Andreas; 2015; 150k Python Dataset and 150k JavaScript Dataset;
http://plml.ethz.ch; doi.org/10.1145/2676726.2677009.

18. Raychev V, Bielik P, Vechev MT. Probabilistic model for code with decision trees. In: Proceedings of the 2016 ACM
International Conference on Object-Oriented Programming, Systems, Languages, and Applications; 2016: 731–747.

19. Svyatkovskiy A, Zhao Y, Fu S, Sundaresan N. Pythia: AI-assisted Code Completion System. In: Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining; 2019: 2727–2735.

20. Zihang D, Zhilin Y, Yiming Y, Jaime G. Carbonell, Quoc Viet Le, Ruslan S. Transformer-XL: Attentive Language Models
beyond a Fixed-Length Context. In: Proceedings of the 57th Conference of the Association for Computational Linguistics;
2019: 2978–2988.

21. Yanlin W, Hui L. Code Completion by Modeling Flattened Abstract Syntax Trees as Graphs. In: Thirty-Fifth AAAI Confer-
ence on Artificial Intelligence, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, The Eleventh
Symposium on Educational Advances in Artificial Intelligence; 2021: 14015–14023.

22. Karampatsis R, Babii H, Robbes R, Sutton C, Janes A. Big code != big vocabulary: open-vocabulary models for source
code. In: Proceedings of the 42nd International Conference on Software Engineering; 2020: 1073–1085.

23. Seohyun K, Jinman Z, Yuchi T, Satish C. Code Prediction by Feeding Trees to Transformers. In: Proceedings of the 43rd
International Conference on Software Engineering; 2021: 150–162.

24. Nguyen AT, Hilton M, Codoban M, et al. API code recommendation using statistical learning from fine-grained changes.
In: Proceedings of the 24th International Symposium on Foundations of Software Engineering; 2016: 511–522.

22 Kang Yang ET AL

25. Roos P. Fast and Precise Statistical Code Completion. In: Proceedings of the 37th IEEE/ACM International Conference on
Software Engineering; 2015: 757–759.

26. Franks C, Tu Z, Devanbu PT, Hellendoorn V. CACHECA: A Cache Language Model Based Code Suggestion Tool. In:
Proceedings of the 37th IEEE/ACM International Conference on Software Engineering, ICSE 2015, Florence, Italy, May
16-24, 2015, Volume 2IEEE Computer Society; 2015: 705–708

27. Raychev V, Vechev MT,Y ahav E. Code completion with statistical language models. In: ACM SIGPLAN Conference on
Programming Language Design and Implementation; 2014: 419–428

28. Allamanis M, Sutton C. Mining idioms from source code. In: Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering; 2014: 472–483.

29. Bruch M, Monperrus M, Mezini M. Learning from examples to improve code completion systems. In: Proceedings of the
7th joint meeting of the European Software Engineering Conference and the ACM SIGSOFT International Symposium on
Foundations of Software Engineering; 2009: 213–222.

30. Liu C, Wang X, Shin R, Joseph E Gonzalez aDS. Neural code completion. 2016. URL https: //openre-
view.net/forum?id=rJbPBt9lg.

31. Allamanis M, Brockschmidt M, Khademi M. Learning to Represent Programs with Graphs. In: Proceedings of the 6th
International Conference on Learning Representations; 2018.

32. Alon U, Sadaka R, Levy O, Yahav E.Structural Language Models for Any-Code Generation.URL:
http://arxiv.org/abs/1910.00577.

33. Brockschmidt M, Allamanis M, Gaunt AL,Polozov O. Generative Code Modeling with Graphs. In: Proceedings of the 7th
International Conference on Learning Representations; 2019.

34. Nguyen AT, Nguyen TN. Graph-Based Statistical Language Modelfor Code. In: Proceedings of the 37th IEEE/ACM
International Conference on Software Engineering; 2015: 858–868

35. Perozzi B, Al-Rfou R, Skiena S. DeepWalk: Online Learning of Social Representations. In: Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining; 2014: 701–710.

36. Grover A, Leskovec J. Node2vec: Scalable Feature Learning for Networks. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining; 2016: 855–864

37. Wang D, Cui P, Zhu W. Structural Deep Network Embedding. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining; 2016: 1225–1234.

38. Bruna J, Zaremba W, Szlam A, LeCun Y. Spectral Networks and Locally Connected Networks on Graphs. In: Proceedings
of the 2nd International Conference on Learning Representations; 2014.

39. Defferrard M, Bresson X, Vandergheynst P. Convolutional Neural Networks on Graphs with Fast Localized Spectral Fil-
tering. In: Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing
Systems 2016; 2016: 3837–3845.

40. Kipf TN, Welling M. Semi-Supervised Classification with Graph Convolutional Networks. In: Proceedings of the 5th
International Conference on Learning Representations; 2017.

41. Chung J, Gülçehre C, Cho K, Bengio Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.
In: CoRR; 2014. URL:http://arxiv.org/abs/1412.3555.

42. Cho K, Merrienboer vB, Gülçehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y. Learning Phrase Representations
using RNN Encoder-Decoder for Statistical Machine Translation. In: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing; 2014: 1724–1734.

Kang Yang ET AL 23

43. RahmanM, Palani D, Rigby PC.Natural software revisited. In: Proceedings of the 41st International Conference on Software
Engineering; 2019: 37–48.

44. Fernandes P, Allamanis M, Brockschmidt M. Structured Neural Summarization. In: Proceedings of the 7th International
Conference on Learning Representations; 2019.

45. Zhou Y, Liu S, Siow JK, Du X, Liu Y. Devign: Effective Vulnerability Identification by Learning Comprehensive Program-
Semantics via Graph Neural Networks. In: Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019; 2019: 10197–10207.

46. Yamaguchi F, Golde N, Arp D, Rieck K. Modeling and Discovering Vulnerabilities with Code Property Graphs. In: IEEE
Computer Society; 2014: 590–604.

	A Graph Sequence Neural Architecture for Code Completion with Semantic Structure Features
	Abstract
	Introduction
	MOTIVATING EXAMPLE
	BACKGROUND
	GGNN
	AST Graph

	PROPOSED MODEL
	Problem Definition
	Constructing AST Graphs
	Learning Node Embedding
	AST Embedding and Prediction

	Experiment Set Up
	Data Availability Statement
	Dataset and Preprocessing
	Baselines
	Evaluation Mertics

	EVALUATION and DISCUSSION
	Research Questions
	Overall Performance
	Terminal Node Prediction
	Each Component Effect on the Model
	Hidden Size and OoV Problem
	Training Cost Analysis

	THREATS TO VALIDITY
	RELATED WORK
	Code Completion
	Graph Embedding

	CONCLUSION AND FUTURE WORKS
	Acknowledgments
	References

