
Bug Report Priority Prediction Using Developer-Oriented
Socio-Technical Features

Zijie Huang
Zhiqing Shao∗

hzj@mail.ecust.edu.cn
zshao@ecust.edu.cn

East China University of Science and
Technology

Shanghai, China

Guisheng Fan∗
Huiqun Yu

gsfan@ecust.edu.cn
yhq@ecust.edu.cn

East China University of Science and
Technology

Shanghai, China

Kang Yang
Ziyi Zhou

15921709583@163.com
zhouziyi@mail.ecust.edu.cn

East China University of Science and
Technology

Shanghai, China

ABSTRACT
Software stakeholders report bugs in Issue Tracking System (ITS)
with manually labeled priorities. However, the lack of knowledge
and standard for prioritization may cause stakeholders to mislabel
the priorities. In response, priority predictors are actively devel-
oped to support them. Prior studies trained machine learners based
on textual similarity, categorical, and numeric technical features
of bug reports. Most models were validated by time-insensitive
approaches, and they were producing sub-optimal results for prac-
tical usage. Moreover, they tend to ignore the developer and social
aspects of ITS. Since ITS bridges users and developers, we integrate
their sentiment- and community-oriented socio-technical features
to perform 2- and multi-classed bug priority prediction and validate
our model in within-project, cross-project, and time-wise scenarios.
The proposed model outperforms the 2 baselines by up to 10% in
AUC-ROC and 13% in MCC, and the significance of improvement is
statistically confirmed. We reveal involving assignee and reporter
features from socio-technical perspectives such as sentiment could
boost prediction performance. Finally, we test statistically the mean
and distribution of the features that reflect the differences in socio-
technical aspects (e.g., quality of communication and resource dis-
tribution) between high and low priority reports. In conclusion, we
suggest researchers should involve contributors’ experience and
sentiments in bug report priority prediction.

CCS CONCEPTS
• Software and its engineering→ Risk management.

KEYWORDS
bug report priority, developer sentiment, socio-technical analysis,
issue tracking system, empirical software engineering

∗Corresponding authors: Zhiqing Shao, Guisheng Fan.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Internetware 2022, June 11–12, 2022, Hohhot, China
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9780-3/22/06. . . $15.00
https://doi.org/10.1145/3545258.3545288

ACM Reference Format:
Zijie Huang, Zhiqing Shao, Guisheng Fan, Huiqun Yu, Kang Yang, and Ziyi
Zhou. 2022. Bug Report Priority Prediction Using Developer-Oriented Socio-
Technical Features. In 13th Asia-Pacific Symposium on Internetware (Inter-
netware 2022), June 11–12, 2022, Hohhot, China. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3545258.3545288

1 INTRODUCTION
Bug fixing is a key task in software maintenance. However, the
limited Software Quality Assurance (SQA) resources cannot support
the localization and elimination of all potential malfunctioning
programs and sub-optimal implementations that lead to bugs. As a
result, practitioners and researchers have been trying to develop
automatic approaches to predict, localize, prioritize, and fix bugs.

Practitioners report and track bugs in ITSs such as JIRA and
Bugzilla. ITS incorporates the life-cycle of a bug from being dis-
covered to being fixed. Once a bug report is created, the reporter
(triager) is required to complete a form including a field concerning
the priority of the bug. Afterwards, the assignee (developer) is in
charge of fixing the bug. Bugs with higher priority deserve to be
resolved sooner by contributors (i.e., reporters and assignees) with
more SQA resources. Since bug triaging is time-consuming, bug
report priority prediction has been actively studied to save efforts.
Researchers constructed prediction models incorporating both con-
textual and technical information. Textual analysis was exploited
to capture the context of bug reports including topics and emo-
tion [41, 44]. Meanwhile, they measured experiences of reporters
[42, 43] and categorical information [34] of similar bug reports to
represent technical characteristics. However, most studies were
not explained [14] and validated [3] with the present standard, e.g.,
lacked explanation to model performance and not time-sensitive.
Moreover, the ITS was not modeled as a social system, i.e., the
patterns of communication and collaboration of stakeholders were
not sufficiently considered and involved.

Recent studies shed light on the impact of socio-technical pat-
terns [1, 30] and sentiments [11] to the development community
healthiness, i.e., the effectiveness of communication and collabora-
tion. Meanwhile, community smells features capturing unhealthy
collaboration and communication patterns in development commu-
nity were proved effective to improve bug prediction performance
[2]. Since ITS is a social system bridging reporters and assignees,
we intend to investigate if socio-technical features measuring their
sentiment and community could improve priority prediction.

https://doi.org/10.1145/3545258.3545288
https://doi.org/10.1145/3545258.3545288

Internetware 2022, June 11–12, 2022, Hohhot, China Huang and Shao, et al.

To the best of our knowledge, there lacks a bug report priority
prediction model involving the perspective of socio-technical fea-
tures. This paper builds a sentiment and development community
aware bug report priority prediction model. We develop machine
learners upon a sentiment dataset [11, 27] over ITS systems to pre-
dict high and low priority bug reports. Furthermore, we assess the
features’ contribution to ourmodel, as well as the impact of different
parameter and validation settings. Finally, we analyze the signifi-
cance of difference in features’ distributions to discriminate high
and low priority bug reports, and to explain model performance.

The main contributions of our work are listed as follows:
(1) To our knowledge, we build the first machine learning based

approach integrating various types of developer sentiment- and
community-oriented socio-technical features into bug report prior-
ity prediction. Our model outperforms the state-of-the-arts in the
JIRA dataset.

(2) We explain our models using SHAP (SHapley Additive ex-
Planation) [20] feature importance. We discover that reporter and
assignee socio-technical features contribute significantly to our
model, and they are top-ranked features.

(3) We evaluate statistically the difference in the distribution of
features that produce high and low priority prediction by assess-
ing their related SHAP values. We infer the features can reflect
difference in several socio-technical aspects between high and low
priority reports.

(4) The replication dataset of this paper is available in [10].
The rest of this paper is organized as follows. In Section 2 we

summarize related work. Section 3 presents how we construct the
dataset, while Section 4 outlines the settings and research ques-
tions, as well as the evaluation metrics. In Section 5 we discuss the
results of the experiment, while Section 6 overviews the threats
to the validity and our effort to cope with them. Finally, Section 7
concludes the paper and describes future research.

2 RELATEDWORK
2.1 Bug Report Priority and Severity Prediction
Most of the bug severity prediction studies were developed and
improved based on a report similarity measure called REP [39].
The authors integrated BM25f-based textual similarity and various
categorical features and defined a KNN (K Nearest Neighbours)-
driven severity measuring method. The authors also divided the
features into textual and non-textual.

To improve textual features, Zhang et al. [47] extended REP us-
ing LDA-based topic model to predict severity and recommend bug
fixers. Instead of extending REP, Yang et al. [44] developed their
own bug severity prediction model based on semantic similarity of
positive and negative emotions in report comments and descrip-
tions. Umer et al. [41] also measured emotions using a lexicon-based
approach called Senti4SD to evaluate positive, negative, and neu-
tral sentiments. The authors used embedded words and sentiments
as input to train CNN-based deep learning models.

As for non-textual features, the improvements include involving
product and component features by Tian et al. [40], as well as stack
traces and more categorical features (e.g., operating system) by Sa-
bor et al. [34]. Alternatively, Valvida-Garcia et al. [42, 43] integrated

experience features of reporters to build blocking bug prediction
models based on various classical machine learning classifiers.

The major differences of our work to prior studies are:
(1) We involve various types of sentiments of reporters and

assignees instead of coarsely positive, negative, and neutral senti-
ments to build predictors. Moreover, we also introduce community-
oriented socio-technical features;

(2) We explain the model by assessing the features’ importance
and interpreting themodel’s behavior, because recent work revealed
inexplainable models are unacceptable for practitioners [48];

(3) We exploit the more practical time-sensitive validation [3]
which is not exploited in up-mentioned studies;

(4) The up-mentioned studies are multi-classed prediction on
Bugzilla ITS, which is different from our two-, three-, and five-
classed prediction on JIRA ITS. Meanwhile, the involved features
and datasets are also different. Moreover, our approach outper-
formed 2 baseline studies [41, 47].

2.2 Socio-Technical Analysis on Developers
Task context including the developers’ perception (social) [9, 32] as
well as their development task (technical) [7, 35] are non-negligible
aspects to comprehend and interpret software artifacts. Thus, socio-
technical analysis combining the up-mentioned perspectives is
performed on these artifacts.

Ortu et al. [22, 24–27] constructed a contributor sentiment dataset
based on JIRA comments and sentences. The dataset is widely stud-
ied and regarded as a state-of-the-art dataset [15]. Furthermore,
Ortu et al. also found that sentiments could reflect the severity
of bug reports and impose impact on bug fixing. For example,
they found impolite comments [26] and bullies [25] are related
to longer bug fixing time. Meanwhile, VAD [22] (Valence-Arousal-
Dominance) scores may help to identify productivity issues such
as burnout, which may lead to longer bug fixing time.

Researchers also focused on community smells, i.e., unhealthy
developer community structure measured by patterns of motifs
over collaboration and communication graphs in open-source de-
velopment community [37]. Tamburri et al. [37] implemented a
community smell detection tool called Codeface4Smells which
evaluates development mailing list and software repository history
information to detect various community smells. Based on their
study, we [11] improved the prediction of community smell occur-
rence on individual developers by involving their sentiments, and
we also suggested developers should communicate in a straightfor-
ward and polite way to improve community healthiness.

3 DATASET CONSTRUCTION
This section describes how we revise and generate features based
on Ortu et al.’s dataset [27] and our prior work [11].

3.1 Analyzed Projects
We perform the prediction over 12 projects analyzed in a dataset
of our prior study [11], which are listed in Table 1. We first calcu-
late socio-technical features based on an original sentiment dataset
[27] consists of project comments with evaluated sentiments. Af-
terwards, we extend the dataset using Codeface4Smells and ad-
ditional mailing lists data to calculate socio-technical metrics. We

Bug Report Priority Prediction Using Developer-Oriented Socio-Technical Features Internetware 2022, June 11–12, 2022, Hohhot, China

Training Set

Project × 12

Project ×11

Single Project

Prediction
Model

ResultTest Set

Single Project

Fold 1
Fold j
......

Fold K-M+1

jth group
Training Set

(j+2)th Group
Test Set

Prediction
Model

Result

All reports

All reportsFold 1
......

Fold 12

Group K reports

by M months

j and (j+2)th group

j < K-100/M

All reports

All reports

Time-Wise Validation

Cross-Project Validation

Within-Project Validation
(Stratified 10-Fold Cross Validation)

M = int(Total Months × Threshold), 0 < Threshold < 0.33

Sentiment-based
Features

Experience-based
Features

Bug Report
Technical Features

Community Smells
and Activeness

Similar Reports
(Technical)

Similar Reports
(Reporters)

Similar Reports
(Assignees)

Assignees

Reporters

Weighted
Texutal Similariity

Auto
Spearman

172 Features
Generated By Combinations of Types with Aspects

4 Types of Features 5 Aspects of Features

Proposed by
Previous Works

Introduced by
This Paper

RQ1:
Performance

RQ2:
Parameter

Settings

RQ3:
Predictive

Power

Explain

Clarify

Data Source

Our Prior Work (Time-Insensitive)
1. Ortu et al.'s JIRA and sentiment raw dataset
2. Codeface4Smells for Community Smell Detection and
Socio-Technical Metric Evaluation

Revise (Time-Sensitive)

Training Set

Project × 12

90% Reports

10% Reports

Prediction
Model

ResultTest Set

Fold 1
......

Fold 10

Every Project

Figure 1: Overview of the prediction process.

Table 1: Overview of The Analyzed Projects

Project Name BlockerCritical Major Minor Trivial
HBase 417 474 3295 953 221

Hadoop Common 712 245 2939 772 143
Hadoop HDFS 189 171 1627 492 57
Cassandra 39 137 1773 1357 284

Hadoop Map/Reduce 349 242 2256 425 77
Hive 131 160 2556 378 81

Harmony 712 111 3003 1044 123
OFBiz 27 80 1297 810 267

Hibernate ORM 164 307 3822 757 114
Camel 9 71 1619 567 46
Wicket 29 107 2297 757 137

Zookeeper 112 128 526 133 36

analyze these projects in [27] because their artifacts (i.e., repository
and mailing list) are acceptable by Codeface4Smells while others
are not. We also revise our time-insensitive data with time series
awareness, i.e., data is sorted by the last updated timestamp, and
no feature is generated based on future data.

3.2 5 Aspects of Feature Construction
Table 2 lists all 172 features extracted, and they will be processed by
feature selection algorithm in the next section. The last 5 columns
represent 5 aspects of the features, namely similar reports (S), re-
porters of similar reports (S_R), assignees of similar reports (S_A),
reporter of the concerning report (R), and assignee of the concerning
report (A). We combine the 5 aspects and 4 types of features in the
first column to construct our dataset, e.g., in the 3rd line we generate
the sentiment valence in ITS comments for 5 aspects, producing 5
features, i.e., S_SEN_VAL, S_R_SEN_VAL, S_A_SEN_VAL, R_SEN_VAL,
and A_SEN_VAL. To clarify, S_SEN_VAL measures valence sentiment

in comments of similar reports, while S_R_SEN_VAL measures va-
lence sentiment in comments made by reporters of similar reports.
Note that some combinations are inapplicable, so we do not gener-
ate them (e.g., changelogs of reporters).

We use the features of similar reports instead of the features of
the report being predicted because we intend to avoid a violation
in time series, i.e., we assume once a bug report is assigned to a
developer, its priority should be predicted.

3.3 Measuring Textual Similarity
Textual similarity is included in most studies predicting bug report
priority [4]. In this paper, we exploit Latent Semantic Indexing
(LSI) and cosine similarity based approach to calculate the textual
similarity between reports, which has been applied to calculate
textual similarity between code fragments [28] and bug reports
[35]. We use preprocessed (i.e., tokenization, stop-words removal
and stemming) text incorporating title and description as corpus for
each bug report. We retrieve the top S similar reports and normalize
their similarity to the range of [0,1] as the weight of every report.
Then, we calculate the weighted summation of every feature of
similar reports to construct features of similar reports (i.e., columns
named S, S_R, and S_A in Table 2) for every report.

3.4 Generating 4 Types of Features
We generate 4 types of features including sentimental, experience,
community, as well as technical features. For sentimental features,
based our prior study [11], our modification and improvement in
this paper includes: (1) we calculate sentiments not only for re-
porters and assignees, but also for every bug report by measuring
their comments, (2) the dataset used in this work is time-sensitive.
For experience features, we measure the contributors’ experience
of commenting, serving as assignees, as well as reporting bugs
and other types of issues (e.g., new feature). For community smells

Internetware 2022, June 11–12, 2022, Hohhot, China Huang and Shao, et al.

Table 2: The Extracted 172 Features (◦ & •) and The Selected 82 Features (•)

Features Description S S_R S_A R A
Sentiments [11, 24]

SEN_VAL Mean intensity of valence, i.e., how developers enjoy a situation. ◦ ◦ ◦ • ◦

SEN_ARO Mean intensity of arousal, i.e., increased alertness. ◦ ◦ ◦ ◦ •

SEN_DOM Mean intensity of dominance, the extent that developers were feeling in control. ◦ ◦ ◦ ◦ ◦

SEN_SAD Mean intensity of all sadness expressions. • • • • ◦

SEN_ANG Mean intensity of all angry expressions. • • • • •

SEN_LOV Mean intensity of all love expressions. ◦ ◦ ◦ ◦ •

SEN_JOY Mean intensity of all joy expressions. • • • • ◦

SEN_POS Mean intensity of all sentiments greater than 0. ◦ ◦ ◦ • ◦

SEN_NEG Mean intensity of all sentiments smaller than 0. ◦ • • • ◦

SEN Summation of all positive and negative sentiments’ intensities. ◦ • ◦ • •

SEN_POL Proportion of polite expressions in all commentary sentences of a developer. • ◦ ◦ • ◦

SEN_IND Proportion of indicative sentences that express fact or belief, e.g., It is buggy. ◦ ◦ ◦ • •

SEN_IMP Proportion of imperative sentences that express command, warning, e.g., Do not produce bugs! • • • • •

SEN_COND Proportion of conditional sentences in the form like would, may, or will, e.g., It might be buggy. • ◦ ◦ • •

SEN_SUB Proportion of subjunctive sentences in the form like wish, were, e.g., I hope it works. • • • • •

SEN_MOD (Modality) The degree of uncertainty of a sentence, ranges between [-1,1]. ◦ ◦ ◦ ◦ ◦

Experience
EXP_A Count of unique issues assigned in the ITS regardless of their types. ◦ ◦ ◦ ◦

EXP_A_BUG Count of bug reports assigned in the ITS. ◦ ◦ ◦ ◦

EXP_A_BUG_PROP Ratio of EXP_A_BUG to EXP_A. • ◦ • ◦

EXP_COM Count of comments in issues regardless of their types. ◦ • ◦ ◦

EXP_COM_BUG Count of comments in bug reports. ◦ ◦ ◦ ◦

EXP_COM_BUG_PROP Ratio of EXP_COM_BUG to EXP_COM. • • • •

EXP_R Count of unique issues reported in the ITS regardless of their types. ◦ ◦ ◦ •

EXP_R_BUG Count of bugs reported in the ITS. ◦ ◦ • ◦

EXP_R_BUG_PROP Ratio of EXP_R_BUG to EXP_R. ◦ ◦ • ◦

Community Smells and Activeness [11, 37]
CS_ML (Missing Links) Mean frequency that developer lacked communication with any co-committing developer. ◦ ◦ ◦ ◦

CS_OS (Org. Silo) Mean frequency that developer lacked communication with co-committing subgroups. ◦ ◦ ◦ ◦

CS_RS (Radio Silence) Mean frequency that contributor blocked communication between subgroups (boundary spanner). ◦ ◦ ◦ ◦

CS (Is Smelly) Mean frequency of a developer affected by any community smells in a given analysis window. ◦ • • ◦

CS_QUIT Mean frequency of a smelly developer quitted the community in a given analysis window. • • • •

ST_CD Mean frequency of code commits. ◦ ◦ ◦ ◦

ST_MD Mean frequency of a developer commented in mailing list. • • • •

ST_COR Mean frequency of acting as a core developer. ◦ ◦ ◦ ◦

ST_SENT Mean count of sentences commented in mailing list. ◦ ◦ • ◦

ST_SPO (Sponsored) Mean frequency of a developer commited only in working hours in a given analysis window. • • • •

Bug Report Technical Features
FEA_ATT Weighted count of attachments. •

FEA_LOG Weighted count of changelogs. •

FEA_COM Weighted count of comments. ◦

FEA_COM_DUR Weighted count of duration in months between the first and last comment. •

FEA_SUB Weighted count of subtasks. •

FEA_VOTE Weighted count of votes. •

FEA_WATCH Weighted count of watchers. •

FEA_COM_SENT Weighted count sentences in comments. ◦

FEA_FIX Weighted count of fixed reports. •

FEA_PRIO Weighted average of reports’ original priority (originally ordinal numbers from 1 to 5). •

FEA_C_R_DUR Weighted count of duration in months between the create and resolve timestamp. •

FEA_R_UPD_DUR Weighted count of duration in months between the resolve and update timestamp. •

FEA_PROP_BLO Proportion of blocking bugs in all similar reports. •

FEA_PROP_SEV Proportion of severe bugs in all similar reports. •

FEA_PROP_MIN Proportion of minor bugs in all similar reports. •

FEA_PROP_TRI Proportion of trivial bugs in all similar reports. •

Bug Report Priority Prediction Using Developer-Oriented Socio-Technical Features Internetware 2022, June 11–12, 2022, Hohhot, China

and activeness features, we apply the state-of-the-art tool Code-
face4Smells [21, 37] to detect community smells. We generate data
for every report and its stakeholders based on the last updated time
of bug reports. For technical features in bug reports, we extract all
features available for each bug report. We do not include any cate-
gorical features such as operating system or affected component
[34], because they are not available in JIRA.

4 EXPERIMENTAL DESIGN
Fig. 1 depicts the overview of prediction process. The goal of our
study is to evaluate how and to what extent bug report priority can
be predicted by developer-oriented socio-technical features, with
the purpose of providing practitioners with recommendations to
automatically assign priorities or correct the mislabeled priorities
(e.g., high priority labeled low and vice versa). To these ends, we
propose 3 research questions.
RQ1: Can our model outperform the baselines?
RQ2:What is the impact of different parameter settings to our model?
RQ3:Which features contribute the most predictive power?

4.1 RQ1-2: Defining and Validating the
Proposed Model

4.1.1 Dependent Variables. Since there exist various treatments
to the predicted priorities caused by the concern of the reliability
of the manually assigned data, we follow the strategy of a prior
study [38] and validate our model in 3 combinations of priorities,
i.e., two-, three-, and five-classed prediction.

The five-classed prediction refers to using the original priorities,
namely blocking, critical, major, minor, and trivial.

In terms of the three-classed prediction, we follow the coarsely-
grained setting of [4, 17, 18] that merges priorities into 3 classes.
We leave the middle class untouched which contains the majority
of bug reports. The 3 classes are presented as follows. High priority
combines the reports originally labeled with blocking and critical.
Medium priority refers to the reports originally labeled major. Low
priority contains the reports originally labeled minor and trivial.

In terms of the two-classed prediction, we exclude the medium
priority class in the two-classed prediction (i.e., reports originally
labeled major) because they share the same characteristics (e.g.,
large sample size) with normal priority reports in Bugzilla [36].
Thus, we only predict the high and low priorities.

4.1.2 Independent Variables and Feature Selection. We use
Autospearman [13] which is capable of completely removing mul-
ticollinearity while preserving most performance. We apply Autos-
pearman to the features in Table 2 in order to (1) address potential
multicollinearity problem, (2) improve the stability of feature im-
portance interpretation [33].

4.1.3 Data Balancing. Bug report priority datasets are imbalanced
[34, 39, 43], which may hinder model performance. Therefore, we
preprocess our data with SMOTE, Random Under Sampling, and
Random Over Sampling if they lead to better performance.

4.1.4 Training Machine Learners. We apply machine learners that
have been used in prior studies [29, 31, 32, 39], including KNN,
Random Forest, Decision Tree, Support Vector Machine, Multilayer
Perceptron, Adaboost, Naive-Bayes, and Logistic Regression. We

configure the hyper-parameters of the classifiers by exploiting Ex-
haustive Grid Search with a 10-Fold Cross-Validation strategy to
select the best parameters instead of using default settings.

4.1.5 Performance Assessment. Webuildmodels separately in cross-
project, within-project, and time-wise validation scenarios (see Fig.
1). Afterwards, we compute performance metrics including AUC-
ROC and MCC (Matthews Correlation Coefficient) to pick the best
classifier in the 3 scenarios. The range of AUC-ROC is 0.5 to 1, and
the range of MCC is -1 to 1. We use only these 2 metrics because
they are insensitive to data distribution and summarize the overall
performance of a model which is more interpretable, while metrics
such as F-Measure applied in prior studies [34, 41, 43, 47] are bi-
ased [46], and metrics such as Precision and Recall only focus on
specific aspects. To clarify, for severely imbalanced datasets such
as bug report priority whose middle class always account for the
majority of data, it is inappropriate to use F-Measure to evaluate
performance since a very high F-Measure score will be generated
if the model classifies all instances to the class that contains the
majority of instances (e.g., the middle class). To rank the model
performance and assess the significance of improvement, we also
involve the Scott-Knott Effect Size Difference (SK-ESD) test.

4.1.6 Model Validation. (1) For cross-project validation, we apply
a strategy similar to [29], which is a project-wide Leave-One-Out
Cross-Validation, i.e., we use 1 out of 12 projects as the test set, and
the others as the training set to build our model. Such a process
is performed 12 times. (2) For within-project validation, we apply
Stratified 10-Fold Cross Validation in each project, i.e., we build
models separately for each project, and we randomly use 10% of
all reports for testing and the rest for training. Such a process is
performed 10 times. Since this strategy is proved reliable [32] for
software engineering, we still acknowledge the potential flaw of
such a method, as it use future data to predict earlier targets [45].
Thus, we involve time-wise validation to eliminate the drawbacks
of this strategy, and to capture the drift of concept [23] in terms of
bug report priority. (3) For time-wise validation, a demonstration of
this process is available in Fig. 1. First, we use the last updated time
for the timestamp to order each reports because it represents the
final state of a report. Second, assume that we have K months of
reports, we group the data by T% of months, each group contains
reports inM=K×T% months. Third, we extract reports from month
j to month M+j-1 as a group. Finally, due to the characteristic of
version iteration [45], we train our models using data in group j,
and validate the model in group j+2M. Such a process is performed
for K-3M+1 times in each project. We do not use a fixed M because
a fixed threshold (e.g., 2 months in [45]) may not derive enough
data and is inadaptive to projects. Meanwhile, we also assess the
impact of different T selections to pick the best-performed one.

4.1.7 Baselines to Compare. We compare our model with two state-
of-the-arts which achieved good performance in BugZilla datasets,
namely cPur [41] and REPTopic [47]. cPur is a CNN-based pre-
dictor which enhanced paragraph vectors of bug reports with the
extracted word vectors of positive, neutral, and negative sentiment,
and REPTopic is a REP- [39] and KNN-basedmodel which uses topic
modeling to enhance the bug triaging performance. We use these
two baselines because they are recent studies which outperformed

Internetware 2022, June 11–12, 2022, Hohhot, China Huang and Shao, et al.

Table 3: Mean Performance and SK-ESD Rankings.

High and Low Priority (Two-Classed)
Within-Project Time-Wise Cross-Project
MCC AUC MCC AUC MCC AUC

Our Approach 0.34(1) 0.70(1) 0.20(1) 0.61(1) 0.24(1) 0.59(1)
cPur 0.21(2) 0.60(2) 0.05(3) 0.51(3) 0.20(2) 0.58(1)

REPtopic 0.07(3) 0.51(3) 0.17(2) 0.57(2) 0.10(3) 0.53(2)
High, Medium, and Low Priority (Three-Classed)

Within-Project Time-Wise Cross-Project
MCC AUC MCC AUC MCC AUC

Our Approach 0.25(1) 0.60(1) 0.16(1) 0.56(1) 0.14(1) 0.58(1)
cPur 0.13(3) 0.55(3) 0.04(2) 0.51(3) 0.10(2) 0.53(2)

REPtopic 0.23(2) 0.57(2) 0.16(1) 0.55(2) 0.07(3) 0.52(3)
The Original 5 Priorities (Five-Classed)

Within-Project Time-Wise Cross-Project
MCC AUC MCC AUC MCC AUC

Our Approach 0.19(1) 0.60(1) 0.16(1) 0.58(1) 0.07(1) 0.54(1)
cPur 0.10(2) 0.53(2) 0.03(2) 0.51(3) 0.02(3) 0.50(3)

REPtopic -0.11(3) 0.47(3) 0.07(3) 0.52(2) 0.04(2) 0.51(2)

other classical methods such as REP [39] and DRONE [40]. We
compare the performance of our model with the baselines in RQ1,
and we demonstrate the parameter settings in the best-performed
prediction class in RQ2.

4.2 RQ3: Explaining the Predictive Power of
Features

To address this RQ, we need to explain the extent of predictive
power that each independent variable contributes to the best clas-
sifier in the best-performed class. We apply the SHAP algorithm,
which has been studied empirically in a recent software engineering
paper [33] validating the stability of feature importance methods
and predicting software defects. SHAPmeasures the contribution of
a feature value to the difference between the actual local prediction
and the global mean prediction [19] to distribute the credit for a
classifier’s output among its features [33] using the game-theory
based Shapley values [20].

Then, we take a closer look at the relationships of features’ dis-
tribution and the prediction results for high and low bug priority,
which is positive (Shapley value > 0) for high priority and negative
for low priority. Since our data are not normally distributed, we
apply the non-parametric Spearman’s Rank Correlation Test [28].
Given two sets of values equal in length, the test produces a corre-
lation coefficient ρ with a p-value to measure the significance level.
We use the conventional threshold of p-value, i.e., 0.05, to mea-
sure the correlation between the features’ values and their Shapley
values calculated. We consider the rank of correlation is trivial if
|ρ |< 0.10, low if 0.10 ≤ |ρ |< 0.30, moderate if 0.30 ≤ |ρ |< 0.50,
high if 0.50 ≤ |ρ |< 0.70, very high if 0.70 ≤ |ρ |< 0.90, and perfect if
|ρ |≥ 0.90 [16]. Meanwhile, we calculate Cliff’s Delta (δ) to measure
the effect size (i.e., the extent of the difference) for each pairs of fea-
ture values that produce positive and negative ϕi values. The effect
size is negligible if |δ |< 0.147, small if 0.147 ≤ |δ |< 0.33, medium
if 0.33 ≤ |δ |< 0.474, and large if |δ |≥ 0.474. Additionally, we also

report the mean and variance of the features leading to positive
and negative prediction results.

5 RESULT AND DISCUSSION
In this section, we answer the proposed research questions by
demonstrating and discussing the results of our experiment.

5.1 RQ1: Model Performance
Table 3 lists the performance of our approach and the 2 compared
baselines validated by SK-ESD. Our approach appears at the top
rank in all 3 validation scenarios of the two-, three-, and five-classed
predictions.

Generally, within-project prediction is the best-performed sce-
nario since sufficient within-project data is provided for training.
The low performance in cross-project predictions may be caused by
the different characteristics of socio-technical patterns in projects.
Meanwhile, lacking enough data in groups of the projects with
fewer reports are harming the performance of time-wise models.

In terms of the performance of the baselines, cPur could achieve
similar cross-project performance in the two-classed prediction,
while REPtopic performs almost as good as our approach in the
three-classed time-wise prediction. We find that the performance
of cPurmay be related to the scale of data, and it performs badly in
time-wise validation since it may not produce enough data for train-
ing. The performance of REPtopic is inferior since many features in
BugZilla are not available in the JIRA dataset, e.g., categorical fea-
tures. Meanwhile, we believe the reason why our approach works
better is that a finer-grained approach to measure the characteris-
tics of the title and description of bug reports is more feasible and
adaptive if extra features such as operating system and component
types are not available.

Finding 1. Our prediction model outperforms the baseline mod-
els by up to 10% in AUC-ROC and 13% in MCC, and it achieves
better prediction result in within-project prediction. Meanwhile, it
is always the top-ranked classifier in all prediction scenarios.

5.2 RQ2: Parameters and Settings
5.2.1 Selecting Classifier. We trainmultiple classifiers on the dataset
and use the best performed one (i.e., Random Forest) for cross-
project, within-project, and time-wise prediction. We also demon-
strate the medians of weighted average performances of the models
ranked by SK-ESD in our online appendix [10].

5.2.2 Data Balancing. We apply Random Under Sampling in all
validation scenarios. The improvement of performance is 2% to 7%
in AUC-ROC and 2% to 6% in MCC.

5.2.3 Number of Similar Reports Selected. The impact of different S
selection is not significant, and a greater S does not necessarily lead
to better performance, which in line with prior studies [42, 43]. The
figure which depicts the details is available in our online appendix
[10].We pick 10 as our parameter because except forMCC inwithin-
project scenario, this selection leads to the best performance.

5.2.4 Months for Grouping in Time-Wise Validation. For time-wise
validation, we also test the impact of selecting different T on model
performance. Grouping data with 10% of available months produces

Bug Report Priority Prediction Using Developer-Oriented Socio-Technical Features Internetware 2022, June 11–12, 2022, Hohhot, China

SIM SIM+EXP SIM+EXP+ASS All (+REP)

0.2

0.3

0.4

0.5

0.6

0.7

Metric
AUC-ROC
MCC
Validation
Cross-Project
Time-Wise
Within-Project

Figure 2: Model performance with different aspects of ap-
pended features.

FEA FEA+EXP FEA+EXP+SEN All(+Smell)

0.1

0.2

0.3

0.4

0.5

0.6

Metric
AUC-ROC
MCC
Validation
Cross-Project
Time-Wise
Within-Project

Figure 3: Model performance with different types of ap-
pended features.

the best performance. The impact of T is even more trivial than S
(smaller than 0.01), so we do not present such a trivial impact.

5.2.5 Performance Variation Based on Subsets of Features. In terms
of the performance variation of models built with features in dif-
ferent aspects, SIM+EXP are features proposed in prior studies [39,
40, 42, 43]. To figure out the impact of novel features proposed
in this paper, we perform predictions based on sets of incremen-
tally appended features, i.e., SIM for features derive from similar
reports, EXP for assignee and reporter experience features, ASS for
all assignee features, and REP for all reporter features. Result in
Fig. 2 shows similarity features are effective to some extent, but
adding reporter- and assignee-related features gradually improves
the model performance.

Similarly, Fig. 3 depicts the performance variation of models
built with features of different types. FEA refers to conventional
technical features of bug reports, SEN refers to sentiments, and

Smell refers to community smell features. FEA+EXP features were
proposed in prior studies. Sentiments and community smell features
are gradually boosting the model performance in most cases.

Finding 2. The selection of classifiers and data balancing tech-
niques impacts the model performance to the greatest extent. The
newly involved developer-oriented sentiment and community fea-
tures could improve model performance based on experience and
technical features.

5.3 RQ3: Feature Importance and Model
Behavior

To reveal the importance of features and the behavior of the pre-
diction model, we intend to find the most discriminating features
from the perspective of statistical analysis. Fig. 4 depicts a SHAP
beeswarm plot displaying the feature values’ impact on the correct
prediction cases of high and low priorities in all 3 scenarios. Darker
(lighter) points represent higher (lower) feature values. Meanwhile,
data points in the right (left) represent higher (lower) Shapley val-
ues that lead to the prediction results of high (low) priority. The
SK-ESD rankings of feature importance values are also presented
in the Y-axis.

From Fig. 4, we can find some obvious and comprehensible trends.
The row of R_EXP_R_BUG and R_EXP_A_BUG_PROP indicate bugs re-
ported by an individual who reported or assigned more bugs tend
to be a more severe one. S_FEA_PROP_MIN indicates a report having
similar reports with higher proportion of minor priority tend to be
predicted as less severe, while S_FEA_PROP_BLO, S_FEA_PROP_SEV,
and S_FEA_PRIO show opposite trends. A_EXP_COM_PROP reveals
reports assigned by individuals with more comments tend to be
predicted as severe. S_FEA_R_UPD_DUR reveals that longer duration
between the time when bug reports are marked as resolved and
when they are updated later indicates they are more severe, which
reflets the difficulty in diagnosing the bugs or preventing them
from re-occurring. S_FEA_FIX shows that bug reports with more
resolved similar bug reports are tend to be predicted as non-severe.
A_SEN_ANG indicates that bug reports assigned by individuals leav-
ing angry comments are tend to be predicted as severe.

Meanwhile, there exists also some trends which are more diffi-
cult to discriminate, especially for the sentimental features. Thus,
to explain Fig. 4 in detail, we demonstrate the statistical relation-
ships between the values of the hard-to-interpret features and their
Shapley values in Table 4. Note that we only present Spearman’s ρ
and Cliff’s δ if the results are statistically significant. Effect sizes
in {Large, Medium, Small, Negligible} are mapped to {L, M, S, -}.
Correlation ranks in {Perfect, High, Moderate, Low, Trivial} are
mapped to {++++, +++, ++, +, -}.

Negative sentiments have always been regarded as problem-
atic in developer sentiment analysis studies [5, 6]. Our findings
in line with their observations since S_A_SEN_ANG, R_SEN_ANG,
R_SEN_SAD, and R_SEN_NEG show similar trend as A_SEN_ANG in
Fig. 4. However, our observation is different from a prior study
since it reported negative sentiments appear more frequently in
low priority bugs [41].

Our prior study showed certainty is an indicator of effective
communication [11]. However, the characteristics of behaviors of
dealing with certainty features differ in our model. In terms of

Internetware 2022, June 11–12, 2022, Hohhot, China Huang and Shao, et al.

0.10 0.05 0.00 0.05 0.10 0.15 0.20
SHAP value (impact on model output)

R_SEN_VAL(6)

R_SEN_SAD(6)

S_SEN_NEG(6)

S_FEA_PROP_SEV(6)

R_SEN_POS(5)

A_SEN_IND(5)

R_SEN_IND(5)

S_FEA_WATCH(5)

R_SEN_POL(5)

S_FEA_PRIO(5)

S_FEA_FIX(5)

R_EXP_COM_PROP(5)

S_R_EXP_COM(4)

A_SEN_ANG(4)

S_FEA_PROP_BLO(4)

S_FEA_R_UPD_DUR(4)

R_EXP_A_BUG_PROP(4)

A_EXP_COM_PROP(3)

A_EXP_R(2)

S_FEA_PROP_MIN(2)

R_EXP_R_BUG(1)

Low

High

Fe
at

ur
e

va
lu

e
Figure 4: Feature values’ impact to the correct prediction cases of our model.

indicative expression, R_SEN_IND and A_SEN_IND show that bug
reports containing indicative expressions tend to be predicted as
non-severe ones. In terms of imperative expression, A_SEN_IMP
shows bug reports with more imperative expressions tend to be
predicted as severe. S_R_SEN_SUB also shows that bug reports with
more subjunctive expressions are more easily to be predicted as
trivial ones.

In terms of positive sentiments, they are interpreted by prior
study as a sign of more constructive collaboration [41]. Similarly,
S_SEN_POL, R_SEN_POS, and A_SEN showmore positive expressions
lead to the prediction of lower priority. However, the S_A_SEN_LOV
and R_SEN_POL features demonstrate an opposite trend. Since their
effect sizes are small, we cannot infer any single sentiment leads to
the prediction of high or low priority.

Apart from the sentimental features, there also exist other fea-
tures to interpret. In terms of the proportion of comments in bug
reports, S_A_EXP_COM_PROP and R_EXP_COM_PROP follow similar
trend in Fig. 4 as A_EXP_COM_PROP. S_R_EXP_COM indicates reporter

of higher priority bugs make more comments, while R_ST_SENT
shows they leave less comment in developer mailing lists.

In terms of community smells, we find that their contribution to
the model is trivial. Community smells are evaluated on mailing
lists [37]. However, related study [8] pointed out that mailing lists
are no longer acting as hubs for communication. Measuring com-
munity smells directly over ITS may improve the performance of
such features. Nevertheless, we still discover the trials of less SQA
resource allocation in low priority bugs which is reported in a prior
study [26], e.g., more severe community smells in low priority bugs,
indicating a reduction in effective cooperation.

The proposed features can partly reflect differences in socio-
technical aspects (e.g., quality of communication and collaboration,
SQA resource distribution) of high and low priority bug reports.
Thus, we suggest researchers should involve socio-technical per-
ceptions of bug reports and the feautres of assignees and reporters
while preserving classical technical metrics.

Finding 3. Reporter and assignee features contribute signifi-
cantly to our model, and they are among the top-ranked features.

Bug Report Priority Prediction Using Developer-Oriented Socio-Technical Features Internetware 2022, June 11–12, 2022, Hohhot, China

Table 4: The Power of The Unmentioned Features to Discriminate High (High P.) and Low (Low P.) Priority Bug Reports

Feature Spearman’s ρ Cliff’s δ Mean Variance
Value Rank Value Effect Size High P. Low P. High P. Low P.

R_SEN_IND -0.67 +++ -0.63 L 0.15 0.35 0.02 0.04
S_FEA_COM_DUR 0.54 +++ 0.58 L 0.21 0.08 0.02 0.01

R_ST_SENT -0.47 ++ -0.52 L 13.83 24.87 104.45 106.53
S_A_SEN_ANG 0.45 ++ 0.45 M 0.09 0.05 0.00 0.00
R_SEN_SAD 0.35 ++ 0.33 M 0.55 0.44 0.03 0.04
R_SEN_NEG -0.39 ++ -0.40 M -0.11 -0.08 0.01 0.01
R_SEN_ANG 0.42 ++ 0.40 M 0.26 0.18 0.01 0.01
A_SEN_IMP 0.41 ++ 0.38 M 0.67 0.37 0.45 0.23

S_R_EXP_COM 0.37 ++ 0.35 M 57.15 45.73 6735.95 11667.98
S_SEN_POL -0.31 ++ -0.29 S 0.06 0.09 0.01 0.01
R_SEN_POS -0.32 ++ -0.23 S 0.14 0.17 0.04 0.03
A_SEN_IND -0.30 ++ -0.28 S 1.37 1.49 0.07 0.13

S_R_EXP_A_BUG_PROP -0.30 ++ -0.32 S 0.00 0.01 0.00 0.00
S_R_SEN_SUB 0.28 + 0.26 S 0.08 0.06 0.01 0.01
S_A_SEN_LOV 0.28 + 0.24 S 0.19 0.16 0.01 0.01
R_SEN_POL 0.25 + 0.22 S 0.15 0.13 0.02 0.03

R_SEN -0.14 + -0.20 S 0.01 0.01 0.00 0.00
A_SEN -0.27 + -0.33 S 1.14 1.55 0.47 0.67

S_FEA_C_R_DUR 0.17 + 0.17 S 0.04 0.03 0.00 0.00
S_A_EXP_COM_PROP 0.27 + 0.25 S 3.17 2.71 2.03 1.51
R_EXP_COM_PROP 0.22 + 0.19 S 0.67 0.63 0.01 0.01

Meanwhile, classical technical features are also among the most
important features. While experience features are more power-
ful predictors than the sentiment features, sentiments also reflect
certain aspects of bug triaging and cooperation.

6 THREATS TO VALIDITY
Construct Validity. The major threat to construct validity is the
way we adjust bug report priority labels. In the two-classed predic-
tion, we discard bug reports labeled major. A similar process is ex-
ploited in other studies discarding normal reports [17, 18, 34, 39, 47]
because they contain high noise. Empirical research [36] showed
the cause of noises in normal class were (1) the unwillingness to
prioritize, (2) the absence of knowledge. Such problems occurred so
common that normal priority bugs usually account for the largest
population. However, normal priority is not presented in JIRA, and
bug triagers are forced to choose between major and minor, i.e.,
JIRA removed normal priority, but it did not eliminate the triagers’
motivation to introduce noise. Since the reports labeled major share
similar characteristics with the normal ones in size (see Table 1),
we discard them to avoid noisy data for two-classed prediction.

Conclusion Validity. The major threat is that we evaluate our
approach in RQ2-3 in merged classes. First, two-classed prediction
is a common setting in priority prediction studies [4]. Second, multi-
classed predictions [39, 40] were producing less ideal results for
practical usage in our study and related works (e.g., F-Measure
< 0.4 in most classes [34, 39, 40, 47]), and interpreting unpromising
models is less helpful [12]. Thus, we demonstrate the results in the
most practical two-classed prediction.

External Validity. The advantage of our model may not be
reproducible in other ITS since they may contain more stronger

indicators than textual features (e.g., operating system, component
type, and categorical features in BugZilla). However, our approach
is validated on a widely used JIRA dataset [27], and JIRA is a less
studied trending ITS system. Thus, we think it is practical and
constructive to perform prediction on JIRA.

7 CONCLUSION
This paper predicted bug report priority by developer-driven socio-
technical features related to developer sentiments and community.
Result showed our model outperformed the baseline models by up
to 10% in AUC-ROC and 13% in MCC. Moreover, we inferred that
the proposed features could reflect the differences in resource dis-
tribution as well as the quality of communication and collaboration
of high and low priority reports. To conclude, we can improve bug
report priority prediction by involving socio-technical features of
reporters and assignees.

Future work includes: (1) the integration of more process- and
assignee-related socio-technical metrics, (2) improving multi-class
and cross-project prediction performance, (3) interpreting the sen-
timents’ interactions with SQA activities.

ACKNOWLEDGMENTS
We wish to thank the three anonymous reviewers for their compre-
hensive and constructive comments.We also thank Xingguang Yang
from NingboTech University for his proofreading and corrections.

This work was partially supported by the National Natural Sci-
ence Foundation of China (No. 61772200), and the Natural Science
Foundation of Shanghai (No. 21ZR1416300).

Internetware 2022, June 11–12, 2022, Hohhot, China Huang and Shao, et al.

REFERENCES
[1] Manuel De Stefano, Fabiano Pecorelli, Damian A. Tamburri, Fabio Palomba, and

Andrea De Lucia. 2020. Splicing Community Patterns and Smells: A Prelimi-
nary Study. In 42nd International Conference on Software Engineering Workshops
(ICSEW). 703–710.

[2] Beyza Eken, Francis Palma, Ayse Basar, and Ayse Tosun. 2021. An empirical
study on the effect of community smells on bug prediction. Software Quality
Journal 29, 1 (2021), 159–194.

[3] Davide Falessi, Jacky Huang, Likhita Narayana, Jennifer Fong Thai, and Burak
Turhan. 2020. On the need of preserving order of data when validating within-
project defect classifiers. Empirical Software Engineering 25, 6 (2020), 4805–4830.

[4] Luiz Alberto Ferreira Gomes, Ricardo da Silva Torres, and Mario Lúcio Côrtes.
2019. Bug report severity level prediction in open source software: A survey and
research opportunities. Information and Software Technology 115 (2019), 58–78.

[5] D. Graziotin, F. Fagerholm, X. Wang, and P. Abrahamsson. 2017. Consequences
of Unhappiness while Developing Software. In 2nd International Workshop on
Emotion Awareness in Software Engineering (SEmotion). 42–47.

[6] Daniel Graziotin, Fabian Fagerholm, Xiaofeng Wang, and Pekka Abrahamsson.
2018. What happens when software developers are (un)happy. Journal of Systems
and Software 140 (2018), 32–47.

[7] L. Gren, P. Lenberg, and K. Ljungberg. 2019. What Software Engineering Can
Learn from Research on Affect in Social Psychology. In 4th International Workshop
on Emotion Awareness in Software Engineering (SEmotion). 38–41.

[8] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. van Deursen. 2013. Com-
munication in open source software development mailing lists. In 10th Working
Conference on Mining Software Repositories (MSR). 277–286.

[9] M. Hozano, A. Garcia, N. Antunes, B. Fonseca, and E. Costa. 2017. Smells Are
Sensitive to Developers! On the Efficiency of (Un)Guided Customized Detection.
In 25th International Conference on Program Comprehension (ICPC). 110–120.

[10] Zijie Huang. 2022. Replication dataset. https://github.com/SORD-src/
Internetware22Replication

[11] Zijie Huang, Zhiqing Shao, Guisheng Fan, Jianhua Gao, Ziyi Zhou, Kang Yang,
and Xingguang Yang. 2021. Predicting Community Smells’ Occurrence on Indi-
vidual Developers by Sentiments. In 29th International Conference on Program
Comprehension (ICPC). 230–241.

[12] J. Jiarpakdee, C. Tantithamthavorn, H. K. Dam, and J. Grundy. 2020.. An Em-
pirical Study of Model-Agnostic Techniques for Defect Prediction Models. IEEE
Transactions on Software Engineering 48, 2 (2020.), 166–185.

[13] Jirayus Jiarpakdee, Chakkrit Tantithamthavorn, and Christoph Treude. 2020. The
impact of automated feature selection techniques on the interpretation of defect
models. Empirical Software Engineering 25, 5 (2020), 3590–3638.

[14] Jirayus Jiarpakdee, Chakkrit Kla Tantithamthavorn, and John Grundy. 2021. Prac-
titioners’ Perceptions of the Goals and Visual Explanations of Defect Prediction
Models. In 18th International Conference on Mining Software Repositories (MSR).
432–443.

[15] R. Jongeling, S. Datta, and A. Serebrenik. 2015. Choosing your weapons: On
sentiment analysis tools for software engineering research. In 31st International
Conference on Software Maintenance and Evolution (ICSME). 531–535.

[16] Serkan Kirbas, Bora Caglayan, Tracy Hall, Steve Counsell, David Bowes, Alper
Sen, and Ayse Bener. 2017. The relationship between evolutionary coupling and
defects in large industrial software. Journal of Software: Evolution and Process 29,
4 (2017), e1842.

[17] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals. 2010. Predicting the severity
of a reported bug. In 7th Working Conference on Mining Software Repositories
(MSR). 1–10.

[18] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonck. 2011. Comparing
Mining Algorithms for Predicting the Severity of a Reported Bug. In 15th European
Conference on Software Maintenance and Reengineering (CSMR). 249–258.

[19] Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M Prutkin,
Bala Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. 2020.
From local explanations to global understanding with explainable AI for trees.
Nature Machine Intelligence 2, 1 (2020), 56–67.

[20] Scott M. Lundberg and Su-In Lee. December 2017. A Unified Approach to Inter-
preting Model Predictions. In 31st International Conference on Neural Information
Processing Systems (NIPS). 4768–4777.

[21] Simone Magnoni. 2020. An approach to measure community smells in software
development communities. https://github.com/maelstromdat/codeface4smells_TR

[22] Mika Mäntylä, Bram Adams, Giuseppe Destefanis, Daniel Graziotin, and Marco
Ortu. 2016. Mining Valence, Arousal, and Dominance: Possibilities for Detecting
Burnout and Productivity?. In 13th International Conference on Mining Software
Repositories (MSR). 247–258.

[23] S. McIntosh and Y. Kamei. 2018. Are Fix-Inducing Changes a Moving Target? A
Longitudinal Case Study of Just-In-Time Defect Prediction. IEEE Transactions on
Software Engineering 44, 5 (2018), 412–428.

[24] Alessandro Murgia, Parastou Tourani, Bram Adams, and Marco Ortu. 2014. Do
Developers Feel Emotions? An Exploratory Analysis of Emotions in Software
Artifacts. In 11th Working Conference on Mining Software Repositories (MSR).

262–271.
[25] M. Ortu, B. Adams, G. Destefanis, P. Tourani, M. Marchesi, and R. Tonelli. 2015.

Are Bullies More Productive? Empirical Study of Affectiveness vs. Issue Fixing
Time. In 12thWorking Conference on Mining Software Repositories (MSR). 303–313.

[26] Marco Ortu, Giuseppe Destefanis, Mohamad Kassab, Steve Counsell, Michele
Marchesi, and Roberto Tonelli. 2015. Would you mind fixing this issue?. In 16th
International Conference on Agile Software Development (XP), Vol. 212. 129–140.

[27] M. Ortu, A. Murgia, G. Destefanis, P. Tourani, R. Tonelli, M. Marchesi, and B.
Adams. 2016. The Emotional Side of Software Developers in JIRA. In 13thWorking
Conference on Mining Software Repositories (MSR). 480–483.

[28] Fabio Palomba, Annibale Panichella, Andy Zaidman, Rocco Oliveto, and An-
drea De Lucia. 2018. The Scent of a Smell: An Extensive Comparison Between
Textual and Structural Smells. IEEE Transactions on Software Engineering 44, 10
(2018), 977–1000.

[29] Fabio Palomba and Damian Andrew Tamburri. 2021. Predicting the emergence of
community smells using socio-technical metrics: A machine-learning approach.
Journal of Systems and Software 171 (2021), 110847.

[30] F. Palomba, D. A. Tamburri, F. Arcelli Fontana, R. Oliveto, A. Zaidman, and
A. Serebrenik. 2021. Beyond Technical Aspects: How Do Community Smells
Influence the Intensity of Code Smells? IEEE Transactions on Software Engineering
47, 1 (2021), 108–129.

[31] F. Palomba, M. Zanoni, F. A. Fontana, A. De Lucia, and R. Oliveto. 2019. Toward
a Smell-Aware Bug Prediction Model. IEEE Transactions on Software Engineering
45, 2 (2019), 194–218.

[32] Fabiano Pecorelli, Fabio Palomba, Foutse Khomh, and Andrea De Lucia. 2020.
Developer-Driven Code Smell Prioritization. In 17th International Conference on
Mining Software Repositories (MSR). 220–231.

[33] G. K. Rajbahadur, S. Wang, G. Ansaldi, Y. Kamei, and A. E. Hassan. 2021. The
impact of feature importance methods on the interpretation of defect classifiers.
IEEE Transactions on Software Engineering (2021), Early Access.

[34] Korosh Koochekian Sabor, Mohammad Hamdaqa, and Abdelwahab Hamou-
Lhadj. 2020. Automatic prediction of the severity of bugs using stack traces
and categorical features. Information and Software Technology 123 (2020), 106205.

[35] Natthawute Sae-Lim, Shinpei Hayashi, and Motoshi Saeki. 2018. Context-based
approach to prioritize code smells for prefactoring. Journal of Software: Evolution
and Process 30, 6 (2018), e1886.

[36] R. K. Saha, J. Lawall, S. Khurshid, and D. E. Perry. 2015. Are These Bugs Really
“Normal"?. In 12th Working Conference on Mining Software Repositories (MSR).
258–268.

[37] D. A. Tamburri, F. Palomba, and R. Kazman. 2021. Exploring Community Smells
in Open-Source: An Automated Approach. IEEE Transactions on Software Engi-
neering 47, 3 (2021), 630–652.

[38] Yuan Tian, Nasir Ali, David Lo, and Ahmed E. Hassan. 2016. On the Unreliability
of Bug Severity Data. Empirical Software Engineering 21, 6 (2016), 2298–2323.

[39] Y. Tian, D. Lo, and C. Sun. 2012. Information Retrieval Based Nearest Neigh-
bor Classification for Fine-Grained Bug Severity Prediction. In 19th Working
Conference on Reverse Engineering (WCRE). 215–224.

[40] Yuan Tian, David Lo, Xin Xia, and Chengnian Sun. 2015. Automated Prediction of
Bug Report Priority Using Multi-Factor Analysis. Empirical Software Engineering
20, 5 (2015), 1354–1383.

[41] Q. Umer, H. Liu, and I. Illahi. 2020. CNN-Based Automatic Prioritization of Bug
Reports. IEEE Transactions on Reliability 69, 4 (2020), 1341–1354.

[42] Harold Valdivia-Garcia and Emad Shihab. 2014. Characterizing and Predicting
Blocking Bugs in Open Source Projects. In 11th Working Conference on Mining
Software Repositories (MSR). 72–81.

[43] Harold Valdivia-Garcia, Emad Shihab, and Meiyappan Nagappan. 2018. Charac-
terizing and predicting blocking bugs in open source projects. Journal of Systems
and Software 143 (2018), 44–58.

[44] Geunseok Yang, Tao Zhang, and Byungjeong Lee. 2018. An Emotion Similarity
Based Severity Prediction of Software Bugs: A Case Study of Open Source Projects.
IEICE Transactions on Information and Systems E101.D, 8 (2018), 2015–2026.

[45] Yibiao Yang, Yuming Zhou, Jinping Liu, Yangyang Zhao, Hongmin Lu, Lei Xu,
Baowen Xu, and Hareton Leung. 2016. Effort-Aware Just-in-Time Defect Predic-
tion: Simple Unsupervised Models Could Be Better than Supervised Models. In
24th ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing (FSE). 157–168.

[46] Jingxiu Yao andMartin J. Shepperd. 2021. The impact of using biased performance
metrics on software defect prediction research. Information Software Technology
139 (2021), 106664.

[47] Tao Zhang, Jiachi Chen, Geunseok Yang, Byungjeong Lee, and Xiapu Luo. 2016.
Towards more accurate severity prediction and fixer recommendation of software
bugs. Journal of Systems and Software 117 (2016), 166–184.

[48] W. Zou, D. Lo, Z. Chen, X. Xia, Y. Feng, and B. Xu. 2020. How Practitioners
Perceive Automated Bug Report Management Techniques. IEEE Transactions on
Software Engineering 46, 8 (2020), 836–862.

https://github.com/SORD-src/Internetware22Replication
https://github.com/SORD-src/Internetware22Replication
https://github.com/maelstromdat/codeface4smells_TR

	Abstract
	1 Introduction
	2 Related Work
	2.1 Bug Report Priority and Severity Prediction
	2.2 Socio-Technical Analysis on Developers

	3 Dataset Construction
	3.1 Analyzed Projects
	3.2 5 Aspects of Feature Construction
	3.3 Measuring Textual Similarity
	3.4 Generating 4 Types of Features

	4 Experimental Design
	4.1 RQ1-2: Defining and Validating the Proposed Model
	4.2 RQ3: Explaining the Predictive Power of Features

	5 Result and Discussion
	5.1 RQ1: Model Performance
	5.2 RQ2: Parameters and Settings
	5.3 RQ3: Feature Importance and Model Behavior

	6 Threats to Validity
	7 Conclusion
	Acknowledgments
	References

